Given:
The side length of a cube is 6 feet.
To find:
The volume of the cube.
Solution:
We know that the volume of a cube is:
[tex]V=a^3[/tex]
Where, a is the side length of the cube.
Putting [tex]a=6[/tex] in the above formula, we get
[tex]V=(6)^3[/tex]
[tex]V=216[/tex]
The volume of the cube is 216 cubic feet. Therefore, the correct option is C.
who can help me please
9514 1404 393
Explanation:
Statement .... Reason
( ) .... Given (repeat of the given statements)
ΔACB ≅ ΔDCE .... SAS postulate
BA ≅ ED .... corresponding parts of congruent triangles are congruent
Advertising expenses are a significant component of the cost of goods sold. Listed below is a frequency distribution showing the advertising expenditures for 75 manufacturing companies located in the Southwest. The mean expense is $50.93 million and the standard deviation is $10.80 million. Is it reasonable to conclude the sample data are from a population that follows a normal probability distribution? Advertising Expense ($ Million) Number of Companies 25 up to 35 4 35 up to 45 19 45 up to 55 27 55 up to 65 16 65 up to 75 9 Total 75
Answer:
Step-by-step explanation:
The table can be computed as:
Advertising Expenses ($ million) Number of companies
25 up to 35 4
35 up to 45 19
45 up to 55 27
55 up to 65 16
65 up to 75 9
TOTAL 75
Let's find the probabilities first:
[tex]P(25 - 35) = P \Big(\dfrac{25-50.93}{10.80}<z< \dfrac{35-50.93}{10.80}\Big) \\ \\ =P \Big(\dfrac{-25.93}{10.80}<z< \dfrac{-15.93}{10.80}\Big) \\ \\ =P(-2.4009<z<-1.475) \\ \\ =(0.0694 -0.0082) \\ \\ =0.0612[/tex]
For 35 up to 45
[tex]P(35 - 45) = P \Big(\dfrac{35-50.93}{10.80}<z< \dfrac{45-50.93}{10.80}\Big)=P \Big(\dfrac{-15.93}{10.80}<z< \dfrac{-5.93}{10.80}\Big) \\ \\ =P(-1.475<z<-0.5491) \\ \\ =(0.2912 -0.0694) \\ \\ =0.2218[/tex]
For 45 up to 55
[tex]P(45 - 55) = P \Big(\dfrac{45-50.93}{10.80}<z< \dfrac{55-50.93}{10.80}\Big)=P \Big(\dfrac{-5.93}{10.80}<z< \dfrac{4.07}{10.80}\Big) \\ \\ =P(-0.5491<z<0.3769) \\ \\ =(0.6480 -0.2912) \\ \\ =0.3568[/tex]
For 55 up to 65
[tex]P(55 - 65) = P \Big(\dfrac{55-50.93}{10.80}<z< \dfrac{65-50.93}{10.80}\Big)=P \Big(\dfrac{4.07}{10.80}<z< \dfrac{14.07}{10.80}\Big) \\ \\=P(0.3768<z<1.3028) \\ \\ =(0.9032-0.6480) \\ \\ =0.2552[/tex]
For 65 up to 75
[tex]P(65 - 75) = P \Big(\dfrac{65-50.93}{10.80}<z< \dfrac{75-50.93}{10.80}\Big)=P \Big(\dfrac{14.07}{10.80}<z< \dfrac{24.07}{10.80}\Big) \\ \\ =P(1.3028<z<2.2287) \\ \\=(0.9871-0.9032) \\ \\ =0.0839[/tex]
Chi-Square Table can be computed as follows:
Expense No of Probabilities(P) Expe [tex](O-E)^2[/tex] [tex]\dfrac{(O-E)^2}{E}[/tex]
compa cted E (n*p)
nies (O)
25-35 4 0.0612 75*0.0612 = 4.59 0.3481 0.0758
35-45 19 0.2218 75*0.2218 = 16.635 5.5932 0.3362
45-55 27 0.3568 75*0.3568 = 26.76 0.0576 0.021
55-65 16 0.2552 75*0.2552 = 19.14 9.8596 0.5151
65-75 9 0.0839 75*0.0839 = 6.2925 7.331 1.1650
[tex]\sum \dfrac{(O-E)^2}{E}= 2.0492[/tex]
Using the Chi-square formula:
[tex]X^2 = \dfrac{(O-E)^2}{E} \\ \\ Chi-square \ X^2 = 2.0942[/tex]
Null hypothesis:
[tex]H_o: \text{The population of advertising expenses follows a normal distribution}[/tex]
Alternative hypothesis:
[tex]H_a: \text{The population of advertising expenses does not follows a normal distribution}[/tex]
Assume that:
[tex]\alpha = 0.02[/tex]
degree of freedom:
= n-1
= 5 -1
= 4
Critical value from [tex]X^2 = 11.667[/tex]
Decision rule: To reject [tex]H_o \ if \ X^2[/tex] test statistics is greater than [tex]X^2[/tex] tabulated.
Conclusion: Since [tex]X^2 = 2.0942[/tex] is less than critical value 11.667. Then we fail to reject [tex]H_o[/tex]
A store is having a sale on jelly beans and almonds. For 2 pounds of jelly beans and 3 pounds of almonds, the total cost is $11. For 4 pounds of jelly beans and 8 pounds of almonds, the total cost is $25. Find them cost for each jelly beans and each pound of almonds.
A bookstore had 81 copies of a magazine, Yesterday the bookstore sold 7/9 of these copies. How many copies were sold yesterday?
Answer: 63 copies were sold yesterday.
Step-by-step explanation: To find how many copies were sold yesterday, simply multiply 81 by 7 which is 567. Then, divide 567 by 9 which is 63.
-4x = 16
a -64
b 4
c 20
d-4
-4× = 16 answer: -4
Step-by-step explanation:
-4 × -4 = 16
Which Factors would simplify in this expression?
(x-8) 4x(x+6)
——————x————-
8(x+6)(x+10) (x+10)
Answer:
(x+6)
Step-by-step explanation:
because you have ( x+6) on bottom of the first equation and on the top on the second equation
which one? Help I’ll give extra points
Answer:
You are right; It is Figure B
Step-by-step explanation:
One of two complementary angles is 71 degrees. Let x = the measure of
the other complementary angle. Write and solve an equation to find the
measure of angle x.
Answer:
19 degrees
Step-by-step explanation:
Sum of 2 angles is complementary,
x + 71 = 90
x = 90 - 71
x = 19 degrees
Lakisha is responsible for bringing the desserts to a friend's birthday
party. She is buying a cake for $25.00 and also cupcakes for $1.25
each. If she has budgeted $60 total, what is the maximum number of
cupcakes she can buy?
a) 68 cupcakes
b) 48 cupcakes
c) 28 cupcakes
d) 20 cupcakes
Alex finds a remnant of landscaping fabric at a garden store . The fabric is the standard width , with length 9.7 m . Alex needs twelve 0.85 - m pieces for a garden patio . a ) Will Alex have more fabric than she needs ? If so , how much more ? b ) Will Alex need more fabric ? If so , how much more ?
Answer:
Kindly check explanation
Step-by-step explanation:
Given that:
Length of remnant fabric = 9.7m
Number of 0.85m length needed for patio = 12
Total length needed = (0.85 * 12) = 10.2m
The length of fabric needed is more than the length of remnant fabric found ;
10.2 m - 9.7m = 0.5m
Hence, Alex will need 0.5m more fabric
Ok please help meeeeeeeeeeeeeeeee
Answer:
Step-by-step explanation:
Volume of a cone is given by the formula,
V = [tex]\frac{1}{3}\pi r^{2}h[/tex]
Here, r = Radius of the circular base of the cone
h = Height
By substituting values from the question,
V = [tex]\frac{1}{3}\times \pi (\frac{6}{2})^2(3)[/tex]
V = 9π
V = 28.27 m³ [Nearest hundred]
If we have to round the answer to the nearest tenth, answer will be,
Volume = 28.3 m³
If we have have to round the answer to the whole number then the answer will be,
Volume = 28 m³
Please guys help me please
Answer:
A will be the answer hope this will help u
Answer:
the correct option is A. (-5,-7)
like (5,-7) I. e (+,-) lies in the 3rd quadrant and the opposite of 3rd quadrant vertically is the 2nd quadrant.
so, the answer should come as (-,-) according to the 2nd quadrant.
so, answer will be (-5,-7)
I hope it's correct.
What's the inequality?
Answer:
I believe the answer is D coorrect me if im wrong
Step-by-step explanation:
if im right brainliest?
or 5 stars and heart
what is 313 3/5 x 65
Answer
20384
Step-by-step explanation:
help please !! i need help
Answer: 1/2x
Step-by-step explanation:
The area of a rectangle is 46 square inches. If the length is 4 times the width, thon find
the dimensions of the rectangle. Round off your answers to the nearest hundredth
Answer:
w = 3.39 in
l = 13.56 in
Step-by-step explanation:
46 = w(4w) = 4w²
w² = 11.5
w = 3.39 in
l = 13.56 in
t/15=3 what operation is that?
Answer:
t = 45
Step-by-step explanation:
[tex]\frac{t}{15} = \frac{3}{1}[/tex]
t × 1 = 15 × 3
t = 45
A quality-conscious disk manufacturer wishes to know the fraction of disks his company makes which are defective. Step 2 of 2: Suppose a sample of 1536 floppy disks is drawn. Of these disks, 1383 were not defective. Using the data, construct the 98% confidence interval for the population proportion of disks which are defective. Round your answers to three decimal places.
Answer:
The 98% confidence interval for the population proportion of disks which are defective is (0.082, 0.118).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
Suppose a sample of 1536 floppy disks is drawn. Of these disks, 1383 were not defective.
1536 - 1383 = 153
This means that [tex]n = 1536, \pi = \frac{153}{1536} = 0.1[/tex]
98% confidence level
So [tex]\alpha = 0.02[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.02}{2} = 0.99[/tex], so [tex]Z = 2.327[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.1 - 2.327\sqrt{\frac{0.1*0.9}{1536}} = 0.082[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.1 + 2.327\sqrt{\frac{0.1*0.9}{1536}} = 0.118[/tex]
The 98% confidence interval for the population proportion of disks which are defective is (0.082, 0.118).
Can anybody help me pls
Answer:
1 and -8
Step-by-step explanation:
I just substituted them until I found the correct one.
Hope this helps ^-^
what is parallel to y=5x + 3
Answer:
y=5x
Step-by-step explanation:
The slope of the line is the same as the original equation, with the 3 just shifting the line down 3 spots on the y axis.
(a) Points and are shown on the number line. Part A Find the distances between points and and between points and . Show your work or explain your answers. Refer to the number lint in your explanation. Enter your answers and your work or explanation in the box provided.
Step-by-step explanation:
Im donating points thank you
Answer:
do you have a graph? we can't do it unless you have one.
Find the magnitude of AB.
A(-2, 6), B(1, 10)
O A 2
OB. ✔️15
O C.5
OD ✔️2
Answer:
C. 5
Step-by-step explanation:
Use the Distance Formula.
Substitute the values of x1 , y1 , x2 , and y2 .
|AB|² =|(1--2)²+(10-6)²|
|AB|² = |9+16|
|AB| = √ 25
|AB| =5
We wish to determine the proportion of small- to medium-sized streams in eastern North Carolina which have runoff from hog farms in order to prepare for issues arising from water quality in the aftermath of hurricanes. A random sample of 174 small- to medium-sized streams is selected and it is found that 100 of them have runoff from hog farms. Which of the following is the value of the parameter of interest in this setting?
a. 0.02322.
b. 0.240.
c. 0.760.
d. the value of the parameter of interest cannot be determined from the given information.
Answer:
The value of the parameter of interest in this setting is 0.5747.
Step-by-step explanation:
The parameter of interest is:
The proportion of small- to medium-sized streams in eastern North Carolina which have runoff from hog farms in order to prepare for issues arising from water quality in the aftermath of hurricanes.
A random sample of 174 small- to medium-sized streams is selected and it is found that 100 of them have runoff from hog farms.
This means that the value of the parameter of interest is:
[tex]p = \frac{100}{174} = 0.5747[/tex]
The value of the parameter of interest in this setting is 0.5747.
At what point(s) do these graphs intersect?
y = x^2 + 3x - 5
y = 4x + 1
Seth's solution:
y = x^2 + 3x - 5
y = 4x + 1
x^2 + 3x - 5 = 4x + 1
x^2 - x - 6 = 0
(x - 3)(x + 2) = 0
x = 3 and x = -2
The graphs intersect at.(-20) and (3,0).
Is Seth's solution correct? Explain.
The graphs intersect at the points (3, 13) and (-2, -7).
How to determine the intersection of 2 graphsGiven the following equations:
y₁ = x² + 3x - 5 (quadratic equation)
y₂ = 4x + 1 (linear equation)
To find the intersection point(s) of the two graphs, we need to solve their equations simultaneously. By so doing, we'll set the equations equal to each other:
y₁ = y₂
x² + 3x - 5 = 4x + 1
collect the like terms
x² - x - 6 = 0
Now we'll factor the quadratic expression:
(x - 3)(x + 2) = 0
x - 3 = 0 or x + 2 = 0
x = 3 or x = -2
Now we have the points of intersection on the x-axis.
To get the corresponding values on the y-axis, we'll plug each value of x into either of the original equations.
Let's use the first equation:
y₁ = x² + 3x - 5
When x = 3:
y₁ = 3² + 3(3) - 5 = 13
When x = -2:
y₂ = 4x + 1 = 4(-2) + 1 = -7
So the first intersection point is (3, 13) and the second intersection point is (-2, -7).
Therefore, the graphs intersect at the points (3, 13) and (-2, -7).
Learn more about intersection here:
https://brainly.com/question/29185601
#SPJ1
HELP ASAP I WILL MARK BRAINLEY
At Camille's Hats, 25% of the 28 hats are baseball caps. How many baseball caps are there?
Answer:
112
Step-by-step explanation:
25 = 1/4 of 100. so u gotta do 4 * 28
Answer:7
Step-by-step explanation:
The table shows Annabeth’s scores on her math assignments. Find the mean.
Answer:
90.35
Step-by-step explanation:
its on envisions
8-2 quiz
How many rabbits will
there be 6 days later?
If a rabbits population starts at 150 rabbits and decreases 5% per day.
Answer:
105 rabbits
Step-by-step explanation:
Multiple 5 percent by six days
5%x6=30%
150 rabbits --- 100%
x ----- 30%
100x=150x30
100x=4500 : 100
x=45
150-45=105
Answer:
880
Step-by-step explanation:
I've taken 5/105 divided and gotten 20.I have taken 20 * 6 which is the decrease so that you can get after six days how many rabbits were decreased and 150 * 6 that you can get how many rabbits are there in 6 days.then I took 900 - 120 i go 880 rabbits hope that helps.
The diagram shows three touching circles.
A is the centre of a circle of radius x centimeters.
B and C are the centers of circles of radius 3.8 centimeters. Angle ABC = 70.
Find the value of x
Answer:
x = 7.31 cm
Step-by-step explanation:
cos 70° = 3.8/AB
0.3420 = 3.8/AB
AB = 11.11 cm
x = 11.11 - 3.8 = 7.31 cm
The value of x which is the radius of circle A is 7.31 cm
What is an equation?An equation is an expression that shows the relationship between two or more numbers and variables.
AB = AC, hence ∠B = ∠C = 70°
∠A + ∠B + ∠C = 180° (angles in a triangle)
∠A + 70 + 70 = 180
∠A = 40°
BC = 3.8 + 3.8 = 7.6
Using sine rule:
BC/sinA = AB / sinB
7.6/sin(40) = AB/sin(70)
AB = 11.11 cm
x = 11.11 - 3.8 = 7.31 cm
The value of x which is the radius of circle A is 7.31 cm
Find out more on equation at: https://brainly.com/question/2972832
The drawing shows a semicircular window separated into 3 sections of . Red Green Green Approximately how many of the glass are red? The window a diameter of 18 units
Answer:
[tex] \frac{45π}{2} \: units^{2} \: ≈ \: \boxed{70.7 \: units²} [/tex]
______________________
The correct option is 70.7
Step-by-step explanation:
Since the green and red make a semicircle, the total measure must be 180°.
Since the two green sectors are both 40°.
The red must add up with the green sectors to total 180°.
This means that:
red sector + 80° = 180°.
–80° –80.
red sector = 100°.
To find the area of a sector, we must first understand the area of the circle itself which is πr², where r is the radius.
Since a full circle is 360°.
(360° / 360°)( πr² ) will be the area.
Or in radians: (2π rad / 2π rad)( πr² ).
From here, we can create the formula:
Area of a sector = ( n° / 360° ) ( πr² ). Where n is the measure or the sector in degrees, and r is the radius.
You may also know that the diameter is twice the measure of the radius.
This means that if we are given a diameter of 18 units from the problem, the radius will be 18/2 or 9 units.
Lastly, all we have to do is substitute all this information to find the area of sector.
Area of the red sector = ( n° / 360° ) ( πr² ).
Area of the red sector =
( (100°) / 360° ) ( π(9)² ).
Area of the red sector = ( 5 / 18 ) ( 81π )
Area of the red sector = ( (5)(81π) / 18 )
Area of the red sector = ( (405π) / 18 )
Area of the red sector = ( 45π / 2 ) units²
Area of the red sector =
(141.371669412.. units²) / 2
Area of the red sector =
70.6858347058.. units²
Area of the red sector ≈
70.7 units²
what’s 1 + 1 + 1 + 1 x 0 x 1 x 1 x 1 + 1 + z + 33 + π + 8 + π?
will give ALL my points