An amoeba is 0.305 cm away from the 0.300 cm focal length objective lens of a microscope. (a) What is the image distance (in cm) for this configuration? (b) What is this image's magnification? An eyepiece with a 2.2 cm focal length is placed 19.78 cm from the objective. (c) What is the image distance for the eyepiece in cm? d_i, e = 6.373 0% deduction per feedback. (d) What magnification is produced by the eyepiece? (e) What is the overall magnification?

Answers

Answer 1

(a) The distance is 18.18 cm. (b) The magnification is 59.71. (c) The distance for the eyepiece is 2.08 cm. (d) The magnification produced by the eyepiece is 0.0548. (e) The overall magnification is 3.27.

(a) The image distance for the configuration can be calculated using the lens formula:

1/f = 1/v - 1/u

where:

f = focal length of the lens (0.300 cm)

v = image distance

u = object distance (0.305 cm)

Since the object is located beyond the focal length of the objective lens (u > f), the image will be formed on the same side as the object and will be virtual. The equation can be rearranged as:

1/v = 1/f - 1/u

Substituting the values:

1/v = 1/0.300 - 1/0.305

Calculating:

1/v ≈ 3.333 - 3.278

1/v ≈ 0.055

Taking the reciprocal of both sides:

v ≈ 1/0.055

v ≈ 18.18 cm

Therefore, the image distance for this configuration is approximately 18.18 cm.

(b) The magnification of the image formed by the objective lens can be calculated using the formula:

magnification = v/u

Substituting the values:

magnification = 18.18/0.305

magnification ≈ 59.71

Therefore, the magnification of the image formed by the objective lens is approximately 59.71.

(c) To calculate the image distance for the eyepiece, we need to consider the combined system formed by the objective lens and the eyepiece. The image formed by the objective lens serves as the object for the eyepiece. We can use the lens formula again:

1/f = 1/v' - 1/u'

where:

f = focal length of the eyepiece (2.2 cm)

v' = image distance for the eyepiece

u' = object distance for the eyepiece (distance between the objective lens and the eyepiece)

Given that the object distance (u') is the sum of the image distance produced by the objective lens and the distance between the objective and the eyepiece:

u' = v + d

Substituting the values:

u' = 18.18 + 19.78

u' ≈ 37.96 cm

Now we can use the lens formula to find v':

1/f = 1/v' - 1/u'

1/2.2 = 1/v' - 1/37.96

Calculating:

1/v' = 0.4545 + 0.0263

1/v' ≈ 0.4808

Taking the reciprocal of both sides:

v' ≈ 1/0.4808

v' ≈ 2.08 cm

Therefore, the image distance for the eyepiece is approximately 2.08 cm.

(d) The magnification produced by the eyepiece can be calculated using the formula:

magnification = v'/u'

Substituting the values:

magnification = 2.08/37.96

magnification ≈ 0.0548

Therefore, the magnification produced by the eyepiece is approximately 0.0548.

(e) The overall magnification of the microscope system can be obtained by multiplying the magnifications of the objective lens and the eyepiece:

overall magnification = magnification (objective) × magnification (eyepiece)

Substituting the values:

overall magnification ≈ 59.71 × 0.0548

overall magnification ≈ 3.27

Therefore, the overall magnification of the microscope system is approximately 3.27.

(a) The image distance for this configuration is approximately 18.18 cm.

(b) The magnification of the image formed by the objective lens is approximately 59.71.

(c) The image distance for the eyepiece is approximately 2.08 cm.

(d) The magnification produced by the eyepiece is approximately 0.0548.

(e) The overall magnification of the microscope system is approximately 3.27.

To learn more about magnification, visit    

https://brainly.com/question/3480304

#SPJ11


Related Questions

An object is 30 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to determine the location of the image.

Answers

Using ray tracing, the location of the image formed by a converging lens can be determined when an object is placed 30 cm in front of it and the lens has a focal length of 10 cm.

To determine the location of the image formed by a converging lens, we can use the principles of ray tracing. In this case, the object is placed 30 cm in front of the lens, and the lens has a focal length of 10 cm. When a ray of light from the object passes through the lens, it refracts according to the lens's shape and focal length.

To trace the rays, we can draw two parallel rays: one that passes through the center of the lens (the principal axis) and continues in the same direction, and another that passes through the focal point before being refracted parallel to the principal axis. These rays intersect behind the lens, forming the image. The location of the image can be determined by measuring the distance from the lens to the point where the rays intersect.

Learn more about ray tracing here:

https://brainly.com/question/31415453

#SPJ11.

A piano wire has a linear mass density of mu = 4.90 times 10^-3 kg/m. Under what tension must the string be kept to produce waves with a wave speed of 500.00 m/s?

Answers

The tension in the piano wire must be kept at 980.00 N to produce waves with a wave speed of 500.00 m/s.

To determine the tension required in the piano wire, we can use the wave speed equation for a string:

v = sqrt(T/μ),

where:

v is the wave speed,

T is the tension in the string,

μ is the linear mass density of the string.

Rearranging the equation to solve for T, we have:

T = μ * v^2.

Given:

μ = 4.90 × 10^-3 kg/m (linear mass density),

v = 500.00 m/s (wave speed).

Substituting these values into the equation, we can calculate the tension:

T = (4.90 × 10^-3 kg/m) * (500.00 m/s)^2

= (4.90 × 10^-3 kg/m) * 250000 m^2/s^2

= 1225 N/m * m

= 1225 N.

Therefore, the tension in the piano wire must be kept at 1225 N to produce waves with a wave speed of 500.00 m/s.

To produce waves with a wave speed of 500.00 m/s, the piano wire should be kept under a tension of 1225 N.

To learn more about tension, visit    

https://brainly.com/question/138724

#SPJ11

ball of mass 3M at x=0 is connected to a ball of mass M at x=L by a massless rod. Consider the three rotation axes A, B and C as shown, all parallel to the y axis.
1)For which rotation axis is the moment of inertia of the object smallest? (It may help you to figure out where the center of mass of the object is.)
A
B
C

Answers

The rotation axis with the smallest moment of inertia is axis B.

To determine the rotation axis with the smallest moment of inertia, we need to consider the distribution of mass and the distances from each axis to the masses.

Given that the masses of the balls are 3M and M, and they are connected by a massless rod, the center of mass of the system will be located closer to the ball with larger mass, which is the ball of mass 3M.

Since the center of mass is closer to the 3M ball, the rotation axis that passes through the center of mass will have the smallest moment of inertia. This rotation axis is axis B, which is located at the center of mass of the system.

Axis A is located at x = 0, which is the position of the 3M ball, but it is not at the center of mass.

Axis C is located at x = L, which is the position of the M ball, but it is also not at the center of mass.

The rotation axis with the smallest moment of inertia is axis B, which passes through the center of mass of the system. Axis A and Axis C are not at the center of mass and therefore have larger moment of inertia compared to axis B.

To know more about rotation visit:
brainly.com/question/29162963

#SPJ11

Two narrow slits are illuminated by light of wavelength λ. The slits are spaced 50 wavelengths apart.What is the angle, in radians, between the central maximum and the m = 1 bright fringe? Express your answer using two significant figures.

Answers

The angle between the central maximum and the m = 1 bright fringe is 0.038 radians.

When a light of wavelength λ passes through two narrow slits that are spaced by a distance d, a pattern of bright and dark fringes can be observed on a screen placed behind the slits. The distance between adjacent bright fringes is given by:$$\Delta y=\frac{\lambda L}{d} $$Where L is the distance between the slits and the screen. When m number of bright fringes are observed, then the angle that corresponds to the mth bright fringe can be calculated using the equation:$$\theta=\frac{m\lambda}{d}$$Here, we are given that the slits are spaced 50 wavelengths apart. Hence, the distance between the slits is given by:d = 50λWe need to find the angle between the central maximum and the m = 1 bright fringe. For m = 1, the angle can be calculated using:$$\theta=\frac{m\lambda}{d}$$$$\theta=\frac{\lambda}{50\lambda}$$$$\theta=0.02$$Hence, the angle between the central maximum and the m = 1 bright fringe is 0.02 radians.

Know more about fringes, here:

https://brainly.com/question/31387359

#SPJ11

A mother sees that her child's contact lens prescription is 1.75 D. What is the child's near point, in centimeters? Assume the near point for normal human vision is 25.0 cm.

Answers

The child's near point, based on the given contact lens prescription, is approximately 57.14 cm.

The closest distance at which a person may clearly focus on an item without effort or accommodation is referred to as the near point. It stands for the distance at which items can still be seen well. It is the closest point to the eye at which an item may be viewed clearly and without blur, in other words. The near point varies from person to person and tends to get bigger as you get older because the lens of the eye loses some of its flexibility.

To calculate the child's near point, we can use the formula for calculating the near point based on the lens power:

Near Point = 100 / (Lens Power in Diopters)

In this case, the child's contact lens prescription is 1.75 D. Using the formula, we can find the near point:

Near Point = 100 / (1.75 D) = 57.14 cm

Therefore, the child's near point, based on the given contact lens prescription, is approximately 57.14 cm.

To learn more about near point, refer to:

https://brainly.com/question/14306580

#SPJ4

Which receptors are responsible for the production of saliva (A) auditory receptors (B) optic receptors (C) skin receptors (D) taste receptors

Answers

The correct answer is option D, taste receptors.Taste receptors are responsible for the production of saliva. The sensation of taste begins with the detection of chemicals by the receptors on the taste buds. There are five basic tastes which are sweet, sour, salty, bitter, and umami.

Taste receptors are specialized structures composed of sensory cells and supporting cells that are found in the oral cavity. The sensory cells have taste receptor cells, which are located in the taste buds on the tongue and in the throat.Taste receptors help to stimulate the production of saliva. The function of saliva is to help break down the food that we eat, by moistening it and breaking it down into smaller particles that can be easily swallowed.

Saliva also helps to keep the mouth moist, to prevent infections and to help the teeth and gums stay healthy.In conclusion, taste receptors are responsible for the production of saliva. They help to stimulate the production of saliva which helps to break down food and keep the mouth moist.

To know more about production visit :

https://brainly.com/question/30333196

#SPJ11

A concerto is different from a symphony in all of the following ways EXCEPT:

a. it does not have a development

b. it features a double exposition

c. it features a separate section for the soloist, called a cadenza

d. it is typically in three movements, rather than four

Answers

A concerto is different from a symphony it does not have a development, which is a distinctive feature of a symphony.

In what way is a concerto different from a symphony?

A concerto differs from a symphony in several ways, including the absence of a development section. While both forms consist of multiple movements and showcase orchestral music, the concerto primarily highlights a soloist or group of soloists in dialogue with the orchestra. Unlike a symphony, a concerto features a double exposition, where both the orchestra and the soloist(s) present separate themes. Additionally, a concerto typically includes a designated section called a cadenza, where the soloist(s) display virtuosic improvisation. However, the number of movements in a concerto is not a distinguishing factor, as it can vary from three to four, mirroring the structure of a symphony.

Learn more about concertos

brainly.com/question/10592545

#SPJ11

what would be the optimum wavelength for generating a beer’s law calibration curve?

Answers

The optimum wavelength for generating a Beer's Law calibration curve depends on the specific substance being analyzed and its absorption characteristics, and it is typically the wavelength at which the substance's absorbance is maximum.

Beer's Law states that there is a linear relationship between the concentration of a substance in a solution and the absorbance of light at a specific wavelength. The absorbance of a substance is directly proportional to its concentration and molar absorptivity, while inversely proportional to the path length of the sample cell.

To generate a calibration curve using Beer's Law, it is essential to choose a wavelength at which the substance of interest has a maximum absorbance. This wavelength corresponds to the peak of the substance's absorption spectrum. At this specific wavelength, the substance absorbs light most efficiently, providing the highest sensitivity and accuracy for concentration determination.

The optimum wavelength can be determined experimentally by measuring the absorbance of the substance at different wavelengths and identifying the wavelength with the highest absorbance. Alternatively, known literature values or spectral databases can be consulted to find the characteristic absorption wavelength for the substance of interest.

To know more about calibration curve, refer here:

https://brainly.com/question/30590682#

#SPJ11

fulfillmagnification is positive for inverted images. true or false? true false

Answers

True The magnification is positive for inverted images.

Magnification refers to the amount by which the image of an object is magnified by an optical device. Magnification is a measure of the apparent size of an object viewed through an optical instrument compared to its actual size. It can be calculated by dividing the size of the image by the size of the object. Magnification is an essential property of telescopes and microscopes.

In optics, magnification is the size of an image in relation to the size of the thing making it. Straight (now and again called sidelong or cross over) amplification alludes to the proportion of picture length to protest length estimated in planes that are opposite to the optical hub.

Know more about Magnification, here:

https://brainly.com/question/21370207

#SPJ11

A spaceship traveling to Alpha Centauri at 0.80c sends a message home to Earth saying they are at the halfway point.
a.) What is the frequency (in GHz) of the message that Earth listeners receive if it was sent at 8.4 GHz?
b.) If the ship's transmitter is omnidirectional, what is the frequency (in GHz) measured at Alpha Centauri?

Answers

a.) The frequency of the message received on Earth would be 25.2 GHz.

b.) The frequency observed at Alpha Centauri would also be 25.2 GHz.

a.) The frequency (in GHz) of the message received on Earth can be calculated using the relativistic Doppler effect formula:

f' = f * sqrt((1 + v/c) / (1 - v/c))

Where:

f' = received frequency on Earth

f = transmitted frequency from the spaceship

v = velocity of the spaceship relative to Earth

c = speed of light

Given:

f = 8.4 GHz

v = 0.80c

Substituting the values into the formula:

f' = 8.4 GHz * sqrt((1 + 0.80c/c) / (1 - 0.80c/c))

= 8.4 GHz * sqrt((1 + 0.80) / (1 - 0.80))

= 8.4 GHz * sqrt(1.80 / 0.20)

= 8.4 GHz * sqrt(9)

= 8.4 GHz * 3

= 25.2 GHz

Therefore, the frequency of the message received on Earth is 25.2 GHz.

b.) At Alpha Centauri, the frequency observed would be different due to the relative motion between the spaceship and the observers at Alpha Centauri. We can use the same relativistic Doppler effect formula to calculate the observed frequency.

Given:

f' = ?

f = 8.4 GHz

v = 0.80c

Substituting the values into the formula:

f' = 8.4 GHz * sqrt((1 + 0.80c/c) / (1 - 0.80c/c))

= 8.4 GHz * sqrt((1 + 0.80) / (1 - 0.80))

= 8.4 GHz * sqrt(1.80 / 0.20)

= 8.4 GHz * sqrt(9)

= 8.4 GHz * 3

= 25.2 GHz

The frequency observed at Alpha Centauri would also be 25.2 GHz.

a.) The frequency of the message received on Earth would be 25.2 GHz.

b.) The frequency observed at Alpha Centauri would also be 25.2 GHz.

This result indicates that the relativistic Doppler effect causes a significant increase in the observed frequency due to the high velocity of the spaceship relative to Earth.

To know more about frequency ,visit:

https://brainly.com/question/254161

#SPJ11

A solid sphere of radius R is placed at a height of 36 cm on a 15∘ slope. It is released and rolls, without slipping, to the bottom.
From what height should a circular hoop of radius R be released on the same slope in order to equal the sphere's speed at the bottom?
Thanks

Answers

The circular hoop of radius R should be released from a height of approximately 19.6 cm on the same slope to have the same speed as the solid sphere at the bottom.

To solve this problem, we can use the principle of conservation of . The potential energy at the starting point is converted into kinetic energy at the bottom of the slope. Since the sphere and the hoop have different moments of inertia, we need to consider their rotational kinetic energy as well.

For the solid sphere:

The potential energy at the starting point is given by mgh, where m is the mass of the sphere, g is the acceleration due to gravity, and h is the height. The kinetic energy at the bottom is given by (1/2)mv^2, where v is the linear velocity of the sphere.

For the circular hoop:

The potential energy at the starting point is also mgh. However, the kinetic energy at the bottom consists of both translational and rotational kinetic energy. The translational kinetic energy is (1/2)mv^2, and the rotational kinetic energy is (1/2)Iω^2, where I is the moment of inertia and ω is the angular velocity of the hoop.

Since the sphere rolls without slipping, the linear velocity v is related to the angular velocity ω by v = Rω, where R is the radius of the sphere.

Comparing the kinetic energies of the sphere and the hoop:

(1/2)mv^2 = (1/2)mv^2 + (1/2)Iω^2

Substituting v = Rω:

(1/2)mv^2 = (1/2)mv^2 + (1/2)I(Rω)^2

Since I for a solid sphere is (2/5)mR^2 and I for a circular hoop is mR^2:

(1/2)mv^2 = (1/2)mv^2 + (1/2)(2/5)mR^2(Rω)^2

Canceling out the common factors and simplifying:

1 = 1 + (2/5)(Rω)^2

Rearranging the equation:

(2/5)(Rω)^2 = 0

This implies that ω, the angular velocity, is 0. Therefore, the hoop only has translational motion.

Now, equating the potential energy of the sphere to the translational kinetic energy of the hoop:

mgh = (1/2)mv^2

Canceling out the common factors:

gh = (1/2)v^2

Substituting v = Rω = R(0) = 0:

gh = 0

This implies that the height h for the hoop is also 0. In other words, the hoop should be released from the same height as the sphere, which is 36 cm.

To equal the speed of the solid sphere at the bottom, the circular hoop of radius R should also be released from a height of approximately 36 cm on the same slope.

To know more about energy visit :

https://brainly.com/question/13881533

#SPJ11

billie travels 3.2 km due east in 0.1 hr, then 3.2 km at 15.0 degrees eastward of due north in 0.21 hr, and finally another 3.2 km due east in 0.1 hr. what is the average velocity for the entire trip?
Select the correct answer CHECK ANSWER 0 of 1 attempts used
a.7 km/hr
b.3 km/hr c.13 km/hr d.19 km/hr e.25 km/hr

Answers

The average velocity of the entire trip is 17.66 km/hr. Hence, none of the given options match the calculated average velocity.

To calculate the average velocity for the entire trip, we need to consider both the displacement and the total time taken.

First, let's calculate the total displacement. The displacement is the straight-line distance from the starting point to the ending point. In this case, Billie travels 3.2 km due east, then 3.2 km at 15.0 degrees eastward of due north, and finally another 3.2 km due east.

The eastward displacement is 3.2 km + 3.2 km = 6.4 km.

The northward displacement is 3.2 km × sin(15°) = 0.84 km.

Now, let's calculate the total time taken. Billie spends 0.1 hr for the first eastward travel, 0.21 hr for the northward travel, and another 0.1 hr for the second eastward travel.

The total time taken is 0.1 hr + 0.21 hr + 0.1 hr = 0.41 hr.

Finally, we can calculate the average velocity by dividing the total displacement by the total time taken

Average velocity = Total displacement / Total time taken

= (6.4 km + 0.84 km) / 0.41 hr

= 7.24 km / 0.41 hr

≈ 17.66 km/hr

Therefore, the average velocity for the entire trip is approximately 17.66 km/hr.

None of the given options match the calculated average velocity.

To know more about average velocity here

https://brainly.com/question/28512079

#SPJ4

1. Show that the inductive time constants RL has units of seconds. 2. If the inductance in the LR circuit is doubled, how is the half-life affected? 3. If the resistance in the LR circuit is doubled, how is the half-life affected?
4. If the charging voltage in the circuit is doubled, how is the half-life affected for the LR circuit? 5. To plot the equation V (1)=Vmax e^tR/L so the graph results in a straight line, what quantity do you have to plot vs, time? What is the expression for the slope of this straight line? Determine the expected self-inductance of a solenoid which has 1600 windings-each of enclosed cross- section radius 2.0 cm--and length 12 cm.

Answers

1. The inductive time constant RL has units of seconds.

2. Doubling the inductance in an LR circuit does not affect the half-life.

3. Doubling the resistance in an LR circuit increases the half-life.

4. Doubling the charging voltage in an LR circuit does not affect the half-life.

5. To plot the equation V(1) = Vmax × [tex]e^{(tR/L)[/tex] as a straight line, plot ln(V(1)) against time and the slope is (R/L).

6. The expected self-inductance of the solenoid is calculated using the formula L = (4π × [tex]10^{-7[/tex] Tm/A) × (1600²) × (π × (0.02)²) / 0.12.

1. To show that the inductive time constant RL has units of seconds, we need to consider the units of the inductance (L) and resistance (R) individually.

The unit of inductance, L, is Henries (H).

The unit of resistance, R, is ohms (Ω).

The time constant (τ) of an RL circuit is given by the formula τ = L/R.

Substituting the units, we have:

τ = (H)/(Ω)

By rearranging the units, we can express henries (H) in terms of seconds (s):

1 H = 1 (Ω)(s)

Therefore, the units of RL, which is the time constant of an RL circuit, are seconds (s).

2. If the inductance in the LR circuit is doubled, the half-life is not affected. The half-life is a measure of the time it takes for the current (or voltage) to decrease to half of its initial value in an exponential decay process. The half-life is independent of inductance (L) and is primarily determined by the resistance (R) in the circuit.

3. If the resistance in the LR circuit is doubled, the half-life is increased. The half-life is directly proportional to the resistance (R) in the circuit. Doubling the resistance will result in a longer time for the current (or voltage) to decrease to half its initial value.

4. If the charging voltage in the circuit is doubled, the half-life is not affected. The half-life of an LR circuit depends on the resistance (R) and inductance (L) but is independent of the charging voltage. Increasing the charging voltage will result in a higher initial current (or voltage), but it will not affect the time it takes for the current (or voltage) to decrease to half its initial value.

5. To plot the equation V(1) = Vmax × [tex]e^{(tR/L)[/tex] in a way that results in a straight line, you need to plot the natural logarithm of the voltage (ln(V(1))) against time (t). The equation then becomes ln(V(1)) = (R/L) × t + ln(Vmax), which is in the form of a linear equation (y = mx + c), where m is the slope and c is the y-intercept.

The expression for the slope of this straight line is (R/L), which represents the ratio of resistance (R) to inductance (L) in the LR circuit.

6. To determine the expected self-inductance of a solenoid with the given specifications, we can use the formula for the self-inductance of a solenoid:

L = (μ₀ × N² × A) / l

Where:

L is the self-inductance

μ₀ is the permeability of free space (4π × [tex]10^{-7[/tex] Tm/A)

N is the number of windings (1600 windings)

A is the cross-sectional area of the solenoid (π × r², where r is the radius of the solenoid)

l is the length of the solenoid (12 cm)

Let's calculate the self-inductance using the given values:

N = 1600

r = 2.0 cm = 0.02 m

A = π × (0.02)²

l = 12 cm = 0.12 m

Substituting these values into the formula, we have:

L = (4π × [tex]10^{-7[/tex] Tm/A) × (1600²) × (π × (0.02)²) / 0.12

Simplifying the expression, we can calculate the expected self-inductance.

Learn more about inductive time constants at

https://brainly.com/question/32246457

#SPJ4

the coefficient of kinetic friction for block a in the figure is 0.2 and the pulley is frictionless. if the mass of block a is 2 kg , what is the magnitude of its acceleration?

Answers

The magnitude of the acceleration of block A is 7.84 [tex]m/s^{2}[/tex]. To determine the magnitude of the acceleration of block A in the given scenario, we need to consider the forces acting on the block.

The force of gravity acting on block A is given by its weight, which is equal to its mass multiplied by the acceleration due to gravity (9.8 [tex]m/s^{2}[/tex]). Therefore, the weight of block A is 2 kg × 9.8 [tex]m/s^{2}[/tex] = 19.6 N.

The frictional force opposing the motion of block A is the coefficient of kinetic friction (0.2) multiplied by the normal force, which is equal to the weight of block A in this case. So the frictional force is 0.2 × 19.6 N = 3.92 N.

The net force acting on block A is the difference between the weight and the frictional force, which is 19.6 N - 3.92 N = 15.68 N.

Using Newton's second law (F = ma), where F is the net force and m is the mass, we can calculate the acceleration: 15.68 N = 2 kg × a

Solving for a, we find a = 15.68 N / 2 kg = 7.84 [tex]m/s^{2}[/tex].

Therefore, the magnitude of the acceleration of block A is 7.84 [tex]m/s^{2}[/tex].

To know more about acceleration, refer here:

https://brainly.com/question/12550364#

#SPJ11

Learning Goal To practice Problem-Solving Strategy 27.2 Motion in Magnetic Fields. EVALUATE your answer An electron inside of a television tube moves with a speed of 2.56x107 m/s. It encounters a region with a uniform magnetic field oriented perpendicular to its trajectory. The electron begins to move along a circular arc of radius 0.190 m. What is the magnitude of the magnetic field? Part C Calculate the magnitude F of the force exerted on the electron by a magnetic field of magnitude 8.27x10^-4 T oriented as described in the problem introduction. Express your answer in newtons

Answers

The magnitude of the magnetic field is 0.090 T. The magnitude of the force exerted on the electron by the magnetic field is 2.09 x 10⁻¹³N.

To find the magnitude of the magnetic field, we can use the formula for the magnetic force experienced by a charged particle moving in a magnetic field.

The magnetic force (F) acting on a charged particle can be calculated using the formula:

F = q * v * B * sin(θ)

where:

F is the force,

q is the charge of the particle (in this case, the charge of an electron, which is 1.6 x 10^(-19) C),

v is the velocity of the particle,

B is the magnitude of the magnetic field, and

θ is the angle between the velocity vector and the magnetic field vector (90 degrees in this case).

We are given the velocity of the electron (v = 2.56 x 10⁷m/s) and the radius of the circular arc (r = 0.190 m).

Since the electron is moving in a circular arc, the magnetic force provides the necessary centripetal force to keep the electron in its circular path.

The centripetal force (Fc) can be calculated using the formula:

Fc = (m * v²) / r

where m is the mass of the electron (9.11 x 10⁻³¹kg).

Since the magnetic force and the centripetal force are equal, we can set up an equation:

q * v * B = (m * v²) / r

Solving for B, we get:

B = (m * v) / (q * r)

Substituting the known values:

B = (9.11 x 10⁻³¹ kg * 2.56 x 10⁷ m/s) / (1.6 x 10⁻¹⁹ C * 0.190 m)

Calculating the value, we find:

B ≈ 0.090 T

Therefore, the magnitude of the magnetic field is approximately 0.090 T.

To calculate the magnitude of the force (F) exerted on the electron, we can use the same formula:

F = q * v * B * sin(θ)

Substituting the given values:

F = (1.6 x 10⁻¹⁹ C) * (2.56 x 10⁷ m/s) * (8.27 x 10⁻⁴ T) * sin(90°)

Calculating the value, we find:

F ≈ 2.09 x 10⁻¹³ N

Therefore, the magnitude of the force exerted on the electron by the magnetic field is approximately 2.09 x 10⁻¹³ N.

The magnitude of the magnetic field is 0.090 T, and the magnitude of the force exerted on the electron by the magnetic field is 2.09 x 10⁻¹³N.

To know more about force visit:

https://brainly.com/question/25239010

#SPJ11

a closely wound, circular coil with a diameter of 4.40 cm has 600 turns and carries a current of 0.580 a .
1) What is the magnitude of the magnetic field at the center of the coil?
B = ______ T
2) What is the magnitude of the magnetic field at a point on the axis of the coil a distance of 8.20cm from its center?
B = ______ T
For full points answer both questions, show steps, and use my numbers.

Answers

Magnetic Field is the region around a magnetic material or a moving electric charge within which the force of magnetism acts. Here the magnitude of the magnetic field at the center of the coil is 9.77 × 10⁻⁵ tesla and the magnitude of the magnetic field at a point on the axis of the coil is  1.401×10⁻⁹ tesla.

In the vicinity of a magnet, an electric current, or a shifting electric field, there is a vector field called a magnetic field where magnetic forces can be seen.

The equation used to calculate the magnetic field at the centre of the coil is:

Here diameter = 4.40 cm

radius = 2.2 cm

μ = 4π × 10⁻⁷

1. B = μNI / 2a

B = 4π × 10⁻⁷ × 600 × 0.580 / 2 × 2.2 = 9.77 × 10⁻⁵ tesla

2. The equation used here is:

B = μNIa² / 2(x²+a²)³/²

B =  4π × 10⁻⁷ × 600 × 0.580 × (2.2)² / 2(8.20²+2.2²)³/² = 1.401×10⁻⁹ tesla

To know more about magnetic field, visit;

https://brainly.com/question/13785473

#SPJ4

Solve the spherical mirror equation for s'.
s' = 1/f - 1/s

Answers

the spherical mirror equation for s'.

s' = 1/f - 1/s the correct answer is S = s’ / (s’ – f)

The spherical mirror equation relat”s the focal length (f) of a spherical mirror to the object distance (s) and the image distance (s’). The equation is given as:

1/f = 1/s + 1/s’

To solve the equation for s, we can rearrange the terms:

1/f – 1/s = 1/s’

Now, let’s isolate 1/s on one side:

1/s = 1/f – 1/s’

To obtain s, we can take the reciprocal of both sides:

S = 1 / (1/f – 1/s’)

Using algebraic manipulation, we can simplify further:

S = s’ / (1/s’ – 1/f

Thus, the solution for s in terms of s’ and f is:

S = s’ / (s’ – f)

This equation gives the object distance (s) in terms of the image distance (s’) and the focal length (f) of the spherical mirror.

Learn more about focal length here:

https://brainly.com/question/31755962

#SPJ11

A parallel-plate capacitor consists of two plates, each with an area of 25cm2 separated by 3.0 mm. The charge on the capacitor is 9.3nC . A proton is released from rest next to the positive plate. How long does it take for the proton to reach the negative plate?

Answers

The time taken, t=s/u=4.57×10⁻⁷/7.37×10⁵=6.20×10⁻¹³s.The time taken for the proton to reach the negative plate is 6.20×10⁻¹³s. Answer: The time taken for the proton to reach the negative plate is 6.20×10⁻¹³s.

The electric potential difference between the plates is given by V=Ed where E is the electric field, and d is the distance between the plates.

E is given by E=σ/ε where σ is the surface charge density, and ε is the permittivity of free space.σ is given by σ=Q/A where Q is the charge on the plates, and A is the area of the plates. Substituting these values,

we get E=σ/ε=(Q/A)/εQ=9.3nC; A=25cm²=2.5×10⁻³m²; ε=8.85×10⁻¹²C²/(N m²).

Thus, E=Q/εA=(9.3×10⁻⁹)/(8.85×10⁻¹²×2.5×10⁻³)=1.052×10⁶V/m.

To find the time taken by the proton to cross the gap between the plates, we use the equation of motion along the electric field direction, s=d=ut+½at²where s is the distance travelled, u is the initial velocity, a is the acceleration due to the electric field, and t is the time taken.

To find u, we use the kinetic energy equation KE=½mv²where m is the mass of the proton, and v is the final velocity, which is zero.KE=qV where q is the charge on the proton and V is the potential difference across the plates. Substituting the values, we get½mv²=qVv=√(2qV/m)q=1.6×10⁻¹⁹C;

V=Ed=1.052×10⁶×3×10⁻³=3.156V;

m=1.67×10⁻²⁷kg.

Thus, v=√(2×1.6×10⁻¹⁹×3.156/1.67×10⁻²⁷)=7.37×10⁵m/s.

For the acceleration, a=F/m=qE/m=1.6×10⁻¹⁹×1.052×10⁶/1.67×10⁻²⁷=1.013×10¹⁴m/s².

Thus, s=d=ut+½at²=½at²=(½)×(1.013×10¹⁴)×(3×10⁻³)²=4.57×10⁻⁷m.

to know more about electric potential difference visit:

https://brainly.com/question/27091481

#SPJ11

Two narrow slits are illuminated by light of wavelength λ. The slits are spaced 10 wavelengths apart.
What is the angle, in radians, between the central maximum and the m = 1 bright fringe?

Answers

The angle, in radians, between the central maximum and the m = 1 bright fringe is approximately 0.114 radians.

When light passes through two narrow slits, it creates an interference pattern on a screen. The pattern consists of a series of bright and dark fringes.

The central maximum corresponds to the brightest part of the pattern, and the bright fringes on either side of the central maximum are labeled as m = 1, m = 2, and so on.

In this case, the slits are spaced 10 wavelengths apart.

We can use the concept of the double-slit interference to find the angle between the central maximum and the m = 1 bright fringe.

The formula for the angle θ between the central maximum and the mth bright fringe in a double-slit interference pattern is given by:

sin(θ) = m * λ / d

where λ is the wavelength of light and d is the distance between the slits.

We are interested in the angle between the central maximum (m = 0) and the m = 1 bright fringe. Plugging in the values into the formula, we have:

sin(θ) = (1 * λ) / (10 * λ)

sin(θ) = 1 / 10

θ = arcsin(1 / 10)

Using a calculator, we find that the arcsin(1 / 10) is approximately 0.114 radians.

Therefore, the angle, in radians, between the central maximum and the m = 1 bright fringe is approximately 0.114 radians.

To know more about wavelength visit:

https://brainly.com/question/16051869

#SPJ11

The crate shown in the figure (Figure 1) lies on a plane tilted at an angle θ = 29 ∘ to the horizontal, with μk = 0.19.
A. Determine the acceleration of the crate as it slides down the plane.
Express your answer using two significant figures.
B. if the crate starts from rest at height of 8.15 mm from base of the plane, what will be the crate's speed when it reaches the bottom of the incline?
Express your answer using two significant figures.

Answers

The acceleration of the crate is approximately 1.84 m/s^2. the speed of the crate, when it reaches the bottom of the incline, is approximately 0.057 m/s.

A. To determine the acceleration of the crate as it slides down the plane, we can use the following equation:

acceleration = g * sin(θ) - μk * g * cos(θ),

where g is the acceleration due to gravity (approximately 9.8 m/s^2), θ is the angle of the plane, and μk is the coefficient of kinetic friction.

Plugging in the values, we have:

acceleration = (9.8 m/s^2) * sin(29°) - (0.19) * (9.8 m/s^2) * cos(29°).

Calculating this expression, the acceleration of the crate is approximately 1.84 m/s^2.

B. To find the speed of the crate when it reaches the bottom of the incline, we can use the following equation:

speed = √(2 * acceleration * distance),

where acceleration is the value we calculated in part A and distance is the height of the incline (8.15 mm or 0.00815 m).

Plugging in the values, we get:

speed = √(2 * 1.84 m/s^2 * 0.00815 m).

Calculating this expression, the speed of the crate, when it reaches the bottom of the incline, is approximately 0.057 m/s.

To learn more about acceleration click here

https://brainly.com/question/12550364

#SPJ11

Consider a spherical Gaussian surface and three charges: q1 = 2.18 μC , q2 = -3.22 μC , and q3 = 4.57 μC . Find the electric flux through the Gaussian surface if it completely encloses (a) only charges q1 and q2, (b) only charges q2 and q3, and (c) all three charges.
Part D Suppose a fourth charge, Q, is added to the situation described in part C. Find the sign and magnitude of Q required to give zero electric flux through the surface.

Answers

The electric flux through the Gaussian surface is (a) 3.40 × 10⁻⁶ Nm²/C, (b) -4.92 × 10⁻⁶ Nm²/C, (c) -1.52 × 10⁻⁶ Nm²/C, and (d) a charge Q of magnitude 2.18 μC with the same sign as q1, i.e., positive.

Determine how to find the electric flux?

(a) To find the electric flux through the Gaussian surface enclosing charges q1 and q2, we can use Gauss's Law.

Since the Gaussian surface completely encloses q1 and q2, the flux is given by Φ₁₂ = q₁ₙet/A₁, where q₁ₙet is the net charge enclosed and A₁ is the area of the surface.

Here, q₁ₙet = q₁ + q₂ = 2.18 μC - 3.22 μC = -1.04 μC, and the area A₁ is constant for the given surface.

Plugging in the values, we find Φ₁₂ = (2.18 μC - 3.22 μC) / ε₀A₁ = -1.04 μC / ε₀A₁. By using the value of ε₀, the electric flux Φ₁₂ is obtained as 3.40 × 10⁻⁶ Nm²/C.

(b) Similarly, for charges q2 and q3, the flux through the Gaussian surface is Φ₂₃ = q₂ₙet/A₂, where q₂ₙet = q₂ + q₃ = -3.22 μC + 4.57 μC = 1.35 μC. Plugging in the values,

we find Φ₂₃ = (1.35 μC) / ε₀A₂ = -4.92 × 10⁻⁶ Nm²/C.

(c) To calculate the flux through the Gaussian surface enclosing all three charges, we can add the net charges enclosed by each charge individually: q₁ₙet = q₁ + q₂ + q₃ = 2.18 μC - 3.22 μC + 4.57 μC = 3.53 μC.

The flux is given by Φ₁₂₃ = q₁ₙet / ε₀A₃ = (3.53 μC) / ε₀A₃ = -1.52 × 10⁻⁶ Nm²/C.

(d) For the electric flux through the surface to be zero, the net charge enclosed by the Gaussian surface must be zero.

Since q₁ₙet = q₁ + q₂ + q₃ + Q = 3.53 μC + Q = 0, we can solve for Q, which gives Q = -3.53 μC.

Therefore, a charge Q of magnitude 2.18 μC with the same sign as q₁ (positive) is required to give zero electric flux through the surface.

To know more about Gaussian surface, refer here:

https://brainly.com/question/30509247#

#SPJ4

look at the image of the apple on the retina. what do you notice about this image?

Answers

When examining the image of the apple on the retina, I observe that it appears smaller and inverted compared to the actual object.

The image formed on the retina is smaller and inverted due to the way light is refracted and focused by the lens of the eye. As light rays pass through the cornea and lens, they converge and intersect on the retina, forming a focused image. However, the image is smaller than the actual object because of the distance between the lens and the retina. Additionally, the inversion of the image occurs because light rays cross over each other as they pass through the lens, resulting in an inverted projection on the retina. Despite the image being smaller and inverted, our brain processes the visual information and interprets it correctly, allowing us to perceive the apple in its actual size and orientation.

To learn more about  apple on the retina, Click here:

https://brainly.com/question/9698090

#SPJ11

8. explain why the outdoor fan motor is de-energized during the defrost cycle?

Answers

During the defrost cycle of a heat pump or air conditioning system, the outdoor fan motor is turned off.

Why the outdoor fan motor is de-energized during the defrost cycle?

This is to prevent cold air circulation, optimize heat transfer, prevent potential damage to the fan blades from contact with ice or frost, and reduce noise levels.

De-energizing the outdoor fan motor allows for efficient defrosting, faster melting of ice or frost on the outdoor unit, and improved overall system performance. It ensures that the heat pump or air conditioner operates effectively even in colder temperatures while minimizing any potential disruptions or issues.

Read more on defrost cycle here:https://brainly.com/question/30163560

#SPJ4

a constant force of 160n acts on an object in the horizontal direction. the force moves the object forward 75m in 2.3 seconds. what is the object’s mass?

Answers

Substituting the given values, we have: mass = 160 N / (75 m / 2.3 s). To determine the object's mass, we can use Newton's second law of motion, which states that the force acting on an object is equal to the mass of the object multiplied by its acceleration.

In this case, the force is 160 N and the acceleration can be calculated using the formula: acceleration = change in velocity / time

The change in velocity can be determined by dividing the displacement (75 m) by the time (2.3 s). Once we have the acceleration, we can rearrange Newton's second law equation to solve for the mass: mass = force / acceleration

Substituting the given values, we have: mass = 160 N / (75 m / 2.3 s)

Evaluating this expression gives the mass of the object.

To know more about Newton's law, refer here:

https://brainly.com/question/15280051#

#SPJ11

Two thin parallel slits that are 0.0118 mm apart are illuminated by a laser beam of wavelength 555 nm.
(a) On a very large distant screen, what is the total number of bright fringes (those indicating complete constructive interference), including the central fringe and those on both sides of it? Solve this problem without calculating all the angles! (Hint: What is the largest that sin ? can be? What does this tell you is the largest value of m?)
(b) At what angle, relative to the original direction of the beam, will the fringe that is most distant from the central bright fringe occur?

Answers

(a) The total number of bright fringes, including the central fringe and those on both sides of it, is 42.

(b) The fringe that is most distant from the central bright fringe occurs at an angle of 90 degrees relative to the original direction of the beam.

Determine how to find the total number of bright fringes?

(a) The total number of bright fringes, including the central fringe and those on both sides of it, is given by the formula:

Number of fringes = (2d) / λ

where d is the separation between the slits and λ is the wavelength of the laser beam.

In this case, the separation between the slits is 0.0118 mm (or 0.0118 × 10⁻³ m) and the wavelength of the laser beam is 555 nm (or 555 × 10⁻⁹ m).

Number of fringes = (2 × 0.0118 × 10⁻³ m) / (555 × 10⁻⁹ m) = 42

Therefore, the total number of bright fringes is 42.

The formula for the number of fringes takes into account the separation between the slits (d) and the wavelength of the light (λ). By substituting the given values into the formula, we can calculate the total number of bright fringes.

The formula assumes that the screen is at a very large distance from the slits, resulting in a pattern of alternating bright and dark fringes. The number of fringes can be determined without calculating the angles directly by using the formula.

Determine the fringe at most distant from the central bright fringe occur?

(b) The fringe that is most distant from the central bright fringe occurs when the angle between the original direction of the beam and the direction of the fringe is at its maximum. This occurs when the angle of diffraction (θ) is maximum, which corresponds to the first minimum of the diffraction pattern.

For small angles, the angle of diffraction (θ) can be approximated as:

θ ≈ (mλ) / d

where m is the order of the fringe (m = 1 for the first minimum), λ is the wavelength of the laser beam, and d is the separation between the slits.

To find the angle at which the fringe is most distant from the central bright fringe, we need to find the maximum value of θ. This occurs when sinθ is maximum, which happens when θ = 90°. At this angle, sinθ = 1.

Therefore, the largest value of sinθ is 1, which gives us the largest value of m. In this case, m = 1.

The angle of diffraction (θ) determines the position of the fringes in the diffraction pattern. The first minimum (dark fringe) occurs when the angle of diffraction is at its maximum. By using the approximation formula for small angles, we can calculate the angle at which the fringe is most distant from the central bright fringe.

The largest value of sinθ is 1, which corresponds to the angle of 90°. This angle gives us the largest value of m, indicating the fringe that is most distant from the central bright fringe.

To know more about diffraction, refer here:

https://brainly.com/question/12290582#

#SPJ4

A projectile is launched upward from ground level at an angle of 30 degrees above the horizontal. If the ball remains aloft for 4s before returning to the ground level, at what speed was it launched?

Answers

The projectile was launched with an initial speed of approximately 19.6 m/s at an angle of 30 degrees above the horizontal.

To determine the initial launch speed of the projectile, we can use the equations of projectile motion.

Given:

Launch angle (θ) = 30 degrees

Time of flight (t) = 4 s

Vertical displacement (Δy) = 0 (since the ball returns to ground level)

The time of flight can be divided into two equal halves: the upward journey and the downward journey. The total time of flight is twice the time of either journey.

Using the equation for vertical displacement:

Δy = v₀ * sin(θ) * t - (1/2) * g * t²

Since the vertical displacement is zero, the equation simplifies to:

0 = v₀ * sin(θ) * t - (1/2) * g * t²

Solving for the initial velocity (v₀):

v₀ = (1/2) * g * t / sin(θ)

Substituting the given values:

v₀ = (1/2) * 9.8 m/s² * 4 s / sin(30°)

Calculating:

v₀ ≈ 19.6 m/s

Therefore, the projectile was launched with an initial speed of approximately 19.6 m/s.

To know more about projectile, click here https://brainly.com/question/28043302

#SPJ11

what is the magnetic flux through the loop shown in the figure?

Answers

The magnetic flux through the loop is approximately 0.000314159 Tesla·m².

To calculate the magnetic flux through a circular loop placed in a uniform magnetic field, we can use the formula:

Φ = B * A * cos(θ)

In this case, the magnitude of the magnetic field is given as 0.2 Tesla. The area of the circular loop can be calculated using the formula [tex]A = \pi * r^2[/tex], where r is the radius of the loop.

Given that the radius of the loop is 5 centimeters (0.05 meters), we can calculate the area as follows:

A = [tex]\pi * (0.05)^2[/tex]

Now, we can substitute the given values into the magnetic flux formula:

Φ =[tex](0.2) * [pi * (0.05)^2] * cos(\theta)[/tex]

Hence, the magnetic flux simplifies to:

Φ = [tex](0.2) * [\pi * (0.05)^2] * cos(0)[/tex]

Φ = [tex](0.2) * [\pi * (0.05)^2][/tex]

Now, we can calculate the magnetic flux through the loop:

Φ =[tex]0.2 * 3.14159 * 0.05^2[/tex]

Φ ≈ 0.000314159 Tesla·m²

To know more about magnetic flux, here

brainly.com/question/31501008

#SPJ4

--The complete Question is, Calculate the magnetic flux through a circular loop placed in a uniform magnetic field, where magnitude of the magnetic field is given as 0.2 Tesla. --

assume address of 8-bit x8 is 0000_0000, which contains a5 hex. 1. MOV (0, EAX) 2. MOV (x8, AL)
Now hind value of each of the following: (Answer all in hex, like XX, XXXX, XXXX_XXXX, where x is a hex digit. Include leading zeros) 1. AL ____
2. AH ____
3. AX ____
4. EAX ____

Answers

assume address of 8-bit x8 is 0000_0000, which contains a5 hex. 1. MOV (0, EAX) 2. MOV (x8, AL)

Now hind value of each of the following are

1. AL = a5

2. AH = unknown

3. AX = unknown

4. EAX = unknown

Let's analyze the given instructions and determine the values of the specified registers in hexadecimal form:

1. MOV (0, EAX):

The instruction MOV (0, EAX) moves the value stored at memory address 0000_0000 (assuming the address size is 8 bits) to the register EAX.

Since the address 0000_0000 contains the value a5 hex, the value of EAX after executing this instruction would also be a5 hex.

  Therefore:

  - AL = a5

  - AH = unknown (the upper 8 bits of EAX are not affected)

  - AX = unknown (the value of AH is unknown)

2. MOV (x8, AL):

The instruction MOV (x8, AL) moves the value stored at the memory location specified by the content of register x8 to the register AL. Since x8 is defined as the address 0000_0000, and the value at that address is a5 hex, executing this instruction would result in the value a5 hex being moved into AL.

  Therefore:

  - AL = a5

  - AH = unknown (not affected)

  - AX = unknown (not affected)

  - EAX = unknown (the lower 16 bits are not affected)

Learn more about a5 hex here:

https://brainly.com/question/31420904

#SPJ11

Visible light passes through a diffraction grating that has 900 slits per centimeter, and the interference pattern is observed on a screen that is 2.66m from the grating.In the first-order spectrum, maxima for two different wavelengths are separated on the screen by 2.90 mm . What is the difference between these wavelengths?

Answers

The difference between the two wavelengths in the first-order spectrum is 39.3 nm.

The diffraction grating that has 900 slits per centimeter, allows visible light to pass through, and the interference pattern is observed on the screen that is 2.66m from the grating. In the first-order spectrum, maxima for two different wavelengths are separated on the screen by 2.90 mm. The difference between the two wavelengths can be calculated using the formula:Δλ = λ/d * xwhere:Δλ = difference between the two wavelengthsλ = wavelength of lighted = distance between the slits on the grating = distance between the maxima on the screen Plugging in the given values, we get:Δλ = (2.90 mm)(1 cm/10 mm)/(900 slits/cm) * (1 m/100 cm) = 39.3 nm Therefore, the difference between the two wavelengths in the first-order spectrum is 39.3 nm.

The wavelength is the distance between the "crest" (top) of one wave and the crest of the next wave. Alternately, we can obtain the same wavelength value by measuring from one wave's "trough," or bottom, to the next wave's trough. The recurrence of a wave is conversely relative to its frequency.

Know more about wavelengths, here:

https://brainly.com/question/31143857

#SPJ11

When a star collapses to one-fifth its size, gravitation at its surface becomes:

Answers

When a star collapses to one-fifth its size, the gravitational force at its surface increases.

Gravitational force is directly proportional to the mass of an object and inversely proportional to the square of its distance. When the star collapses to one-fifth its size, its mass remains the same, but the distance from the center of the star to its surface decreases.

Let's denote the original radius of the star as R and the collapsed radius as R/5. The distance from the center of the star to its surface decreases by a factor of 1/5, which means the new distance is (1/5)R.

The gravitational force at the surface of the star can be calculated using Newton's law of universal gravitation:

F = (G * M * m) / r^2

where F is the gravitational force, G is the gravitational constant, M is the mass of the star, m is the mass of an object at the surface of the star, and r is the distance between the center of the star and the surface.

Since the mass of the star remains the same during the collapse, we can consider M as a constant. The gravitational force is inversely proportional to the square of the distance, so as the distance decreases, the gravitational force increases.

Therefore, when the star collapses to one-fifth its size, the gravitational force at its surface increases.

Here you can learn more about gravitational force

https://brainly.com/question/32609171#

#SPJ11

Other Questions
when a firm is producing at the level of output that maximizes profit, which of the following is true?(1 point) Student Activities As assigned by your instructor, you will be working with a team of your classmates to resolve the problems at PAC Resources. There will be six teams-one team working on the organiza This was a rapid influx of fortune seekers to sutter's mill in california in 1849. Gold rush this shoshone indian girl was an invaluable guide to lewis and clark on their trek west. Sacagawea this was a territory in the western u. S. Purchased from france for $15 million in 1803. Construction on this began in 1811 and was the first federally funded turnpike in the united states. This is the name given to the purchase of the alaska territory from russia in 1867, for which the u. S. Paid $7 million. This was an act of continental congress which initially organized the first united states territory and was to be the basis for governing how the united states would expand westward. This was a major u. S. Route from missouri to the northwest in the 19th century. This was the forced migration of the cherokee indians to oklahoma in 1838-39 an increase in government transfers is considered to be an example of because it . a. expansionary fiscal policy; shifts the aggregate demand curve to the right, increasing real gdp b. contractionary fiscal policy; shifts the aggregate demand curve to the left, decreasing real gdp c. expansionary monetary policy; shifts the aggregate demand curve to the right, increasing real gdp d. contractionary monetary policy; shifts the aggregate demand curve to the left, decreasing real gdp A.To be considered, for the position candidates must demonstrate initiative and strong communication skills.B.To be considered for the position, candidates must demonstrate initiative and strong communication skills.Which one uses the comma correctly? A governments MD&A states that government-wide net position decreased as a result of the issuance of a long-term liability during the current reporting period. Does this sound correct? How does the issuance of long-term debt typically affect net position in the year of issuance? e322 Evaluate fc (2-1)3 dz, where c is the circle [z il = 1. This triangle has all acute angles and has the angles measueres of 100 degrees 40 and 40. WHAT KIND OF TRIANLGE(S) DOES THIS MAKE ? Which of the following is NOT true of Wi-Fi Protected Access (WPA)?A)supports Temporal Key Integrity Protocol (TKIP)/Rivest Cipher 4 (RC4) dynamic encryption key generationB)was the first security protocol for wireless networksC)supports 802.1X/Extensible Authentication Protocol (EAP) authentication in the enterpriseD)uses passphrase-based authentication in SOHO environments An analysis that explains differences between the checking account balance according to the depositor's records and the balance reported on the bank statement is a(n) Analysis of debits and credits Internal audit Trial reconciliation. Bank audiT John and Mary have a handicapped child that is financially dependent upon them. The death of one of the parents would not be financially disastrous, however the death of both likely would be. Which policy would be best suited for them? Congestion charges effectively decrease the number of cars on the road. This is an example of:a. the law of supplyb. the public-good problemc. the free-rider problemd. the common-resource probleme. internalizing the externaility When summarizing progress, you should describe all of the following except:2Correct1.00 points out of1.00Flag questionA. ContentB. Following are the issuances of stock transactions. 1. A corporation issued 3,000 shares of $20 par value common stock for $72,000 cash. 2. A corporation issued 1,500 shares of no-par common stock to its promoters in exchange for their efforts, estimated to be worth $37,000. The stock has a $2 per share stated value. 3. A corporation issued 1,500 shares of no-par common stock to its promoters in exchange for their efforts, estimated to be worth $37,000. The stock has no stated value. 4. A corporation issued 750 shares of $100 par value preferred stock for $112,000 cash.Prepare journal entries to record Consider the following hypothetical pooled cross-sectional data of daily COVID-19 cases per 1,000 people during the early two months of the pandemic, from March to April 2020 in Ohio and 5 other neighboring states. The variable April takes value 1 if the recorded cases are from April 2020, and takes value 0 if the recorded cases are from March 2020. The variable lockdown takes value 1 if the state put in place a Stay-at-home order beginning from March 2020, and takes value 0 otherwise. Using the difference-in-differences estimator, assess the impact of the lockdown policy on daily COVID-19 cases. Table 1. Daily COVID-19 Cases by State April Cases Lockdown State Indiana 0 2 0 Indiana 1 8 0 0 1 0 1 2 0 Kentucky Kentucky Michigan Michigan Ohio 0 3 0 1 8 0 0 2 1 Ohio 1 4 1 0 4 1 1 7 1 Pennsylvania Pennsylvania West Virginia West Virginia 0 1 1 1 2 1 shakeia duncan wants to know what home price she can afford. her annual gross income is $46,200. she owes $790 per month on other debts and expects her property taxes and homeowner's insurance to cost $210 per month. she knows she can get an 8.50 percent, 30-year mortgage so her mortgage payment factor is 7.69. she expects to make a 15 percent down payment. what is shakeia's affordable home purchase price? Refer to the Front Page to answer two questions. FRONT PAGE Pricing Disney+ Disney decided it wanted to provide streaming services directly to customers, rather than renting its library of films and television shows to other streaming services like Netflix. But how successful would a streaming service be? In other words, what did the demand for a "Disney+" streaming service look like? Disney knew that the number of subscribers would depend not just on the attractiveness of the Disney archives, but also on the subscription price. After doing some market research, Disney decided to launch Disney+ at a price of $6.99 a month (or $69.99 per year). When Disney+ was launched on November 12, 2019, 10 million people signed up on the first day-a resounding success! Source: News reports, October-December 2019. Instructions: Round your response to one decimal place. If the quantity demanded decreases by 1.7 million for every $1 increase in the subscription price, a. How many initial subscribers would Disney+ have gotten at a price of $4.99? million subscribers b. This is a [(Click to select) what are the concentrations of carbon in -ferrite and fe3c at a temperature just below 727c? you may want to use animated figure 9.24. if a 5.00 force acts to the right for 1.80 seconds, what is its new momentum Explain how a firm might benefit from having a capacityconstraint.