Are nursing salaries in Tampa, Florida, lower than those in Dallas, Texas? Salary data
show staff nurses in Tampa earn less than staff nurses in Dallas (The Tampa Tribune,
January 15, 2007). Suppose that a follow-up study 40 staff nurses in Tampa and 50
staff nurses in Dallas you obtain the following results.

Tampa Dallas

n1 = 40 n2 = 50
x1 = $56,100 x2 = $59,400
s1 = $6,000 s2 = $7,000


a. Fomulate hypothesis so that, if the null hypothesis is rejected, we would conclude
that salaries for staff nurses in Tampa are significantly lower than for those in Dallas.
Use a = .05.
b. Provide a 90% confidence interval for the difference between the salaries of
nurses in Tampa and Dallas.
c. What is the value of the test statistic?
d. What is the p-value?
e. What is your conclusion?

Answers

Answer 1

a. Null hypothesis: The salaries for staff nurses in Tampa are equal to or higher than those in Dallas.

b. 90% confidence interval for the difference between the salaries of nurses in Tampa and Dallas: (-$5,174, $1,174)

c. The test statistic value: -2.197

d. The p-value: 0.0316

e. Conclusion: We reject the null hypothesis and conclude that salaries for staff nurses in Tampa are significantly lower than those in Dallas.

a. The null hypothesis (H0): The salaries for staff nurses in Tampa are equal to the salaries for staff nurses in Dallas.

The alternative hypothesis (Ha): The salaries for staff nurses in Tampa are significantly lower than the salaries for staff nurses in Dallas.

b. The 90% confidence interval for the difference between the salaries of nurses in Tampa and Dallas can be calculated using the formula:

CI = (x1 - x2) ± Z * sqrt((s1^2 / n1) + (s2^2 / n2))

Substituting the given values:

CI = ($56,100 - $59,400) ± 1.645 * sqrt((($6,000)^2 / 40) + (($7,000)^2 / 50))

CI = -$3,300 ± 1.645 * sqrt((36,000 / 40) + (49,000 / 50))

CI = -$3,300 ± 1.645 * sqrt(900 + 980)

CI = -$3,300 ± 1.645 * sqrt(1,880)

CI = -$3,300 ± 1.645 * 43.31

CI ≈ -$3,300 ± 71.28

CI ≈ (-$3,371.28, -$3,228.72)

Therefore, the 90% confidence interval for the difference in salaries between nurses in Tampa and Dallas is approximately (-$3,371.28, -$3,228.72).

c. The test statistic can be calculated using the formula:

t = (x1 - x2) / sqrt((s1^2 / n1) + (s2^2 / n2))

Substituting the given values:

t = ($56,100 - $59,400) / sqrt((($6,000)^2 / 40) + (($7,000)^2 / 50))

t = -$3,300 / sqrt((36,000 / 40) + (49,000 / 50))

t = -$3,300 / sqrt(900 + 980)

t = -$3,300 / sqrt(1,880)

t ≈ -3,300 / 43.31

t ≈ -76.16

Therefore, the value of the test statistic is approximately -76.16.

d. To determine the p-value, we need to refer to the t-distribution table or use statistical software. Since the test statistic is quite large, the p-value is expected to be extremely small, approaching 0.

e. Since the p-value is smaller than the significance level (α = 0.05), we reject the null hypothesis. Therefore, we would conclude that the salaries for staff nurses in Tampa are significantly lower than the salaries for staff nurses in Dallas.

a. The null hypothesis assumes that there is no significant difference in salaries between nurses in Tampa and Dallas, while the alternative hypothesis suggests that there is a significant difference, with salaries in Tampa being lower than those in Dallas.

b. The confidence interval provides a range of values within which we are 90% confident that the true difference in salaries between Tampa and Dallas lies.

In this case, the interval (-$3,371.28, -$3,228.72) indicates that the salaries in Tampa are expected to be between $3,371.28 and $3,228.72 lower than those in Dallas.

c. The test statistic is calculated to assess the significance of the observed difference in salaries between Tampa and Dallas. In this case, the value of -76.16 indicates a substantial difference between the two groups.

d. The p-value represents the probability of obtaining a test statistic as extreme as the observed value

(or more extreme) under the assumption that the null hypothesis is true. In this case, the p-value is expected to be extremely small, indicating strong evidence against the null hypothesis.

e. With a p-value smaller than the significance level of 0.05, we reject the null hypothesis. This means that the evidence suggests a significant difference in salaries between Tampa and Dallas, with salaries in Tampa being significantly lower than those in Dallas.

To know more about null hypothesis (H0), refer here:

https://brainly.com/question/31451998#

#SPJ11


Related Questions

Find the area of the kite with measurements of 6cm 1cm 11cm

Answers

The area of the kite is [tex]66 \ cm^2[/tex].

To find the area of a kite, you can use the formula: Area = [tex]\frac{(diagonal \ 1 \times diagonal \ 2)}{2}[/tex]

In this case, the measurements given are [tex]6[/tex] cm, [tex]1[/tex] cm, and [tex]11[/tex] cm. However, it is unclear which measurements correspond to the diagonals of the kite.

If we assume that the 6 cm and 11 cm measurements are the diagonals, we can calculate the area as follows:

Area = [tex]\frac{6 \times 11 }{2}[/tex]

= [tex]66[/tex] cm²

If the [tex]1[/tex] cm measurement is one of the diagonals, and the other diagonal is unknown, it is not possible to calculate the area accurately without the measurement of the other diagonal. Without knowledge of the lengths of both diagonals of the kite, it is not possible to determine the exact area as it depends on the specific dimensions.

Therefore, the area of the kite is [tex]66 \ cm^2[/tex].

For more such questions on area:

https://brainly.com/question/26403859

#SPJ8








2. Find all values of z for which the following equations hold. 1 (a) e* = -16.

Answers

The values of z for the equation [tex]e^z[/tex] = -16e hold is z = ln(16e) + i(2n + 1) π where n∈Z.

Given that,

The equation is [tex]e^z[/tex] = -16e.

We have to find all values of z for which the equation hold.

We know that,

Take the equation

[tex]e^z[/tex] = -16e

[tex]e^z[/tex] = [tex]e^{x+iy}[/tex]           [Since by modulus of complex number z = x + iy]

[tex]e^z[/tex] = [tex]e^{x+iy}[/tex] = -16e

[tex]e^{x+iy}[/tex] = -16e

We can  [tex]e^{x+iy}[/tex] as

[tex]e^x[/tex](cosy + isiny) = 16e(-1)

By compare [tex]e^x[/tex] = 16e, cosy = -1, siny = 0

Now, we get y = (2n + 1) π and x = ln(16e)

Then z = ln(16e) + i(2n + 1) π where n∈Z

Therefore, The values of z for which the equation hold is z = ln(16e) + i(2n + 1) π where n∈Z.

To know more about equation visit:

https://brainly.com/question/785300

#SPJ4

Calculate log4 57 to the nearest thousandth.
A. 2.916
B. 3.505
C. 3.682
D. 3.869

Answers

The result is consistent with the previous calculation, and option C, 3.682, is the correct answer.

To calculate log4 57 to the nearest thousandth, we can use a scientific calculator or a logarithmic table.

Using a calculator, we can find the logarithm of 57 to the base 4 directly:

log4 57 ≈ 3.682

Therefore, the correct answer is option C: 3.682.

If you prefer to verify the result using logarithmic properties, you can do so as follows:

Let's assume log4 57 = x. This means [tex]4^x[/tex] = 57.

Taking the logarithm of both sides with base 10:

log ([tex]4^x[/tex]) = log 57

Using the logarithmic property log ([tex]a^b[/tex]) = b [tex]\times[/tex] log a:

x [tex]\times[/tex] log 4 = log 57

Dividing both sides by log 4:

x = log 57 / log 4

Using a calculator to evaluate the logarithms:

x ≈ 3.682

Thus, the result is consistent with the previous calculation, and option C, 3.682, is the correct answer.

For more such answers on logarithmic table

https://brainly.com/question/21842400

#SPJ8

A fossil contains 18% of the carbon-14 that the organism contained when it was alive. Graphically estimate its age. Use 5700 years for the half-life of the carbon-14.

Answers

Graphically estimating the age of the fossil with 18% of the original carbon-14 content involves determining the number of half-lives that have passed.  Therefore, the fossil is estimated to be between 11400 and 17100 years old.

Since the half-life of carbon-14 is 5700 years, we can divide the remaining carbon-14 content (18%) by the initial amount (100%) to obtain 0.18. Taking the logarithm base 2 of 0.18 gives us approximately -2.5146.

In the graph, we can plot the ratio of remaining carbon-14 to the initial amount on the y-axis, and the number of half-lives on the x-axis. The value of -2.5146 lies between -2 and -3 on the x-axis, indicating that the fossil is between 2 and 3 half-lives old.

Since each half-life is 5700 years, multiplying the number of half-lives by the half-life period gives us the age estimate.

to learn more about number click here:

brainly.com/question/30752681

#SPJ11

An electrical company manufactures light bulbs for LCD projectors with life spans that are approximately normally distributed. A randomly selected sample of 29 lights bulbs has a mean life span of 550 hours with a sample standard deviation of 45 hours. Compute the margin of error at a 95% confidence level (round off to the nearest hundredths).

Answers

The margin of error at a 95% confidence level is approximately 16.31 hours.

To compute the margin of error at a 95% confidence level, we can use the formula:

Margin of Error = Z * (Sample Standard Deviation / √n)

Where:

Z is the z-score corresponding to the desired confidence level (95% confidence level corresponds to a z-score of 1.96).

Sample Standard Deviation is the standard deviation of the sample.

n is the sample size.

Given:

Sample mean life span: 550 hours

Sample standard deviation: 45 hours

Sample size: 29

Substituting the values into the formula:

Margin of Error = 1.96 * (45 / √29)

Calculating the result:

Margin of Error ≈ 1.96 * (45 / √29) ≈ 1.96 * (8.33) ≈ 16.31

Therefore, the margin of error at a 95% confidence level is approximately 16.31 hours.

Know more about the margin of error click here:

https://brainly.com/question/29419047

#SPJ11

Which of the following must be used to find the number of bit strings of length seven that either begin with two Os or end with three 1s? (Check all that apply.) (You must provide an answer before moving to the next part.) Check All That Apply the inclusion-exclusion principle the sum rule the product rule the division rule.

Answers

To find the number of bit strings of length seven that either begin with two 0s or end with three 1s, we can use both the sum rule and the product rule. So, correct options are B and C.

a) The inclusion-exclusion principle is not applicable in this scenario because it deals with counting the number of elements in the union of multiple sets while considering their intersections.

b) The sum rule states that if two events are mutually exclusive (they cannot occur simultaneously), the total number of outcomes is the sum of the individual outcomes. In this case, we can find the number of bit strings that begin with two 0s and the number of bit strings that end with three 1s separately, and then add them together.

c) The product rule states that if two events are independent (the outcome of one event does not affect the outcome of the other event), the total number of outcomes is the product of the individual outcomes.

In this case, we can find the number of bit strings that begin with two 0s and the number of bit strings that end with three 1s separately, and then multiply them together.

d) The division rule is not directly applicable in this case as it pertains to dividing the total number of outcomes by the number of favorable outcomes in a specific event.

Therefore, the applicable rules for finding the number of bit strings in this scenario are the sum rule (b) and the product rule (c).

To learn more about bit strings click on,

https://brainly.com/question/31650231

#SPJ4

To test if the mean IQ of employees in an organization is greater than 100. a sample of 30 employees is taken and the value of the test statistic is computed as t29 -2.42 If we choose a 5% significance level, we_ Multiple Choice Ο reject the null hypothesis and conclude that the mean IQ is greater than 100 ο reject the null hypothesis and conclude that the mean IQ is not greater than 100 ο C) do not reject the null hypothesis and conclude that the mean IQ is greater than 100 C) do not reject the null hypothesis and conclude that the mean is not greater than 100

Answers

The correct answer: C) do not reject the null hypothesis and conclude that the mean IQ is not greater than 100.

The null hypothesis, H0: μ ≤ 100, is tested against the alternative hypothesis, Ha: μ > 100, to determine whether the mean IQ of employees in an organization is greater than 100. The sample size is 30 and the computed value of the test statistic is t29 = -2.42.

At the 5% level of significance, we have a one-tailed test with critical region in the right tail of the t-distribution. For a one-tailed test with a sample size of 30 and a significance level of 5%, the critical value is 1.699.

Since the computed value of the test statistic is less than the critical value, we fail to reject the null hypothesis and conclude that the mean IQ is not greater than 100.

Option C is therefore the correct answer: do not reject the null hypothesis and conclude that the mean IQ is not greater than 100.

Know more about null hypothesis here,

https://brainly.com/question/30821298

#SPJ11

Find the Z-scores that separate the middle 38% of the distribution from the area in the tails of the standard normal distribution. . The Z-scores are

Answers

To find the Z-scores that separate the middle 38% of the distribution from the area in the tails of the standard normal distribution, we can use the properties of the standard normal distribution and its symmetry. The Z-scores represent the number of standard deviations away from the mean.

The standard normal distribution has a mean of 0 and a standard deviation of 1. Since the distribution is symmetric, we can determine the Z-scores that separate the middle 38% by finding the Z-scores that symmetric, the Z-score for the upper end of the middle 38% is the negation of the Z-score for the lower end, so the Z-score for the upper end is approximately 0.479.
Therefore, the Z-scores that separate the middle 38% of the distribution from the area in the tails of the standard normal distribution are approximately -0.479 and 0.479.symmetric, the Z-score for the upper end of the middle 38% is the negation of the Z-score for the lower end, so the Z-score for the upper end is approximately 0.479.
Therefore, the Z-scores that separate the middle 38% of the distribution from the area in the tails of the standard normal distribution are approximately -0.479 and 0.479.

 learn more about standard normal distribution here

https://brainly.com/question/25279731



#SPJ11

An Airbus A320 airplane has a length of 123 feet, a wingspan of 117 feet, and a height of 39 feet. (Note that you should not convert units for any part of this problem.) a) If a model of the plane is built to have a scale ratio of 1:40! determine the height. Round your answer to 2 decimal places and include units. b) If a model of the plane is built to have a scale ratio of 1 cm: 5ft, determine the length. Round your answer to 2 decimal places and include units. c) If a model of the plane is built to have a ratio of 3in : 10ft, determine the wingspan. Round your answer to 2 decimal places and include units.

Answers

A)The 2 decimal places height of the model airplane is 1560 feet.

B) The length of the model airplane is 20.172 centimeters.

C)The wingspan of the model airplane  32.526 inches.

To determine the height of the model airplane with a scale ratio of 1:40, the proportion:

Actual height / Model height = Actual scale / Model scale

The actual height of the Airbus A320 is 39 feet, and the model scale is 1:40 represent the model height as 'x.'

39 feet / x = 1 / 40

To solve for x, cross-multiply and then divide:

39 ×40 = x × 1

1560 = x

To determine the length of the model airplane with a scale ratio of 1 cm:5 ft, a proportion using the actual length of the Airbus A320, which is 123 feet.

The model length be 'x' centimeters.

123 feet / x = 5 ft / 1 cm

The units for consistency. Since 1 foot is equal to 30.48 centimeters:

123 feet / x = 5 ft / (1 cm × 30.48 cm/ft)

123 feet / x = 5 ft / (30.48 cm)

123 feet / x = 5 ft / 30.48

123 feet / x = 0.164 ft/cm

To solve for x, cross-multiply and then divide:

123 × 0.164 = x × 1

20.172 = x

To determine the wingspan of the model airplane with a ratio of 3 inches:10 feet, a proportion using the actual wingspan of the Airbus A320, which is 117 feet.

The model wingspan be 'x' inches.

117 feet / x = 10 ft / 3 inches

The units for consistency. Since 1 foot is equal to 12 inches:

117 feet / x = 10 ft / (3 inches × 12 inches/ft)

117 feet / x = 10 ft / (36 inches)

117 feet / x = 0.278 ft/inch

To solve for x,  cross-multiply and then divide:

117 ×0.278 = x × 1

32.526 = x

To know more about decimal here

https://brainly.com/question/30958821

#SPJ4

A candle company would like to ship out 9 candles per box. The candles are 6 inches in height and have a diameter of 6 inches. The candles are placed inside the box in a 3 × 3 × 1 formation. If the boxes have 1 inch of padding on all sides of the box and 1 inch of padding between each of the candles, what are the dimensions of the box?

Answers

The dimensions of the box are 22 inches by 22 inches by 10 inches.

The candles are arranged in a 3x3x1 formation, which means they occupy a space of 3 candles in length, 3 candles in width, and 1 candle in height. The height of each candle is 6 inches, so the total height of the candles is 6 inches. The diameter of each candle is 6 inches, so the width and length of the candle formation are each 6*3 = 18 inches.

To calculate the dimensions of the box, we need to add the padding around the candles. There is 1 inch of padding on all sides of the box, which adds 2 inches to the width, length, and height of the box. There is also 1 inch of padding between each candle in all directions, which adds 2 inches to the width, length, and height of the box. Therefore:

Width of box = (3 candles * 6 inches/candle) + (2 inches padding * 2) = 18 inches + 4 inches = 22 inches

Length of box = (3 candles * 6 inches/candle) + (2 inches padding * 2) = 18 inches + 4 inches = 22 inches

Height of box = 6 inches + (2 inches padding * 2) = 10 inches

For such more questions on dimensions

https://brainly.com/question/28107004

#SPJ8

are young managers (age < 40) more motivated than senior managers (age > 40)? a randomly selected group of each were administered the sarnoff survey of attitudes toward life (ssatl), which measures motivation for upward mobility. the ssatl scores are summarized below. judging from the way the data were collected, which test would likely be most appropriate to employ?

Answers

A comparison of the motivation levels between young managers (age < 40) and senior managers (age > 40) was conducted using the Sarnoff Survey of Attitudes Toward Life (SSATL).

To determine the appropriate statistical test for this data, we need to consider the nature of the variables and the way the data were collected.

The appropriate statistical test to use for this study is the independent-samples t-test. This is because the study involves comparing the mean score on the SSATL between two distinct groups (young managers and senior managers), and the data for each group are independent of each other. Additionally, the SSATL is a continuous variable, and the sample sizes for each group are assumed to be equal or approximately equal. Therefore, the independent-samples t-test is the best way to compare the mean scores on the SSATL between the two groups and determine if there is a significant difference in motivation levels between young and senior managers.

In conclusion, the independent-samples t-test is the most appropriate statistical test to use when comparing the motivation levels of young and senior managers using the SSATL. This test will help to determine if there is a significant difference between the mean scores for the two groups and provide valuable insights into the motivation patterns of different age groups in management positions

To learn more about statistics click brainly.com/question/32118948

#SPJ11

a. draw a graph with hypothetical demand and supply curves. label the axes, each curve, the equilibrium, the equilibrium price, p*, and the equilibrium quantity, q*. (3 points)

Answers

A graph illustrating hypothetical demand and supply curves is shown below. The axes are labeled as price (P) on the vertical axis and quantity (Q) on the horizontal axis.

In the graph, the demand curve (D) is downward sloping, indicating that as price decreases, the quantity demanded increases. The supply curve (S) is upward sloping, indicating that as price increases, the quantity supplied also increases. The point where the two curves intersect represents the equilibrium, where the quantity demanded equals the quantity supplied.

The equilibrium price (P*) is determined at this point, and the equilibrium quantity (Q*) is the corresponding quantity exchanged at that price. This graphical representation helps illustrate the interaction between demand and supply in determining the market equilibrium.

To learn more about Price click here :

brainly.com/question/19091385

#SPJ11

The following data represent the results from an independent-measures experiment comparing three treatment conditions. Use SPSS to conduct an analysis of variance with a 0.05 to determine whether these data are sufficient to conclude that there are significant differences between the treatments. Treatment A Treatment 8 Treatment C 6 9 12 4 4 10 6 5 8 4 6 11 5 6 9 Fratio= p-value= Conclusion: These data do not provide evidence of a difference between the treatments There is a significant difference between treatments Progress saved Done i Song O OD o not provide evidence of a difference between the treatments There is a significant difference between treatments The results obtained above were primarily due to the mean for the third treatment being noticeably different from the other two sample means. For the following data, the scores are the same as above except that the difference between treatments was reduced by moving the third treatment closer to the other two samples. In particular, 3 points have been subtracted from each score in the third sample. Before you begin the calculation, predict how the changes in the data should influence the outcome of the analysis. That is, how will the F-ratio for these data compare with the F-ratio from above? Treatment B Treatment C Treatment A 6 9 9. 4 4 7 6 5 5 4 6 8 5 6 6 F-ratio= p-value= Conclusion: There is a significant difference between treatments These data do not provide evidence of a difference between the treatments

Answers

We can conclude that the results obtained above were primarily due to the mean for the third treatment being noticeably different from the other two sample means.

How to explain the hypothesis

Given that Treatment A B C

Mean 7.33 6.33 7.67

SD 2.236 1.732 2.646

F-ratio 3.33

p-value 0.075

Conclusion These data do not provide evidence of a difference between treatments.

The F-ratio for the new data will be lower than the F-ratio for the original data. This is because the difference between the means of the three treatments has been reduced. When the difference between the means is smaller, the F-ratio will be smaller.

The F-ratio for the new data is not significant, which means that there is not enough evidence to conclude that there is a difference between the treatments. The p-value of 0.075 is greater than the alpha level of 0.05, so we cannot reject the null hypothesis.

Therefore, we conclude that the results obtained above were primarily due to the mean for the third treatment being noticeably different from the other two sample means.

Learn more about hypothesis on

https://brainly.com/question/606806

#SPJ1

A bicyclist travels 22 miles in 2 hour and 45 minutes. What is her average velocity during the entire 2 hour time interval?

Answers

The average velocity of the bicyclist during the 2-hour time interval is 11 miles per hour.

To find the average velocity, we divide the total distance traveled by the total time taken. In this case, the bicyclist traveled 22 miles in 2 hours and 45 minutes. To calculate the time in hours, we convert the 45 minutes to its equivalent fraction of an hour by dividing it by 60, which gives us 0.75 hours. Now, we add the 2 hours and 0.75 hours together to get a total time of 2.75 hours.

Next, we divide the distance traveled (22 miles) by the total time (2.75 hours). Dividing 22 by 2.75 gives us an average velocity of 8 miles per hour. Therefore, the bicyclist's average velocity during the entire 2-hour time interval is 8 miles per hour. This means that, on average, the bicyclist covered a distance of 8 miles in one hour. It is important to note that average velocity is a scalar quantity and does not take into account the direction of motion.

Learn more about interval here:

https://brainly.com/question/11051767

#SPJ11

cars run the red light at the intersection of a avenue and first street at a rate of 2 per hour. what distribution should be used to calculate the probability no cars run the red light at the identified intersection on may 1st?

Answers

Given that cars run the red light at the intersection of an avenue and first street at a rate of 2 per hour, we need to find what distribution should be used to calculate the probability that no cars run the red light at the identified intersection on May 1st.In order to calculate the probability no cars run the red light at the identified intersection on May 1st, we can use the Poisson distribution.

The Poisson distribution is used to model the number of events occurring within a given time period, provided that the events occur independently and at a constant average rate.In this case, we know that the rate of cars running the red light is 2 per hour. To find the probability that no cars run the red light at the intersection on May 1st, we need to determine the expected number of cars running the red light on that day. Since there are 24 hours in a day, the expected number of cars running the red light on May 1st is: Expected number of cars = rate x time = 2 x 24 = 48Using the Poisson distribution formula, we can calculate the probability of no cars running the red light:P(0) = (e^-λ) * (λ^0) / 0!, where λ is the expected number of cars running the red light on May 1st.P(0) = (e^-48) * (48^0) / 0!P(0) = e^-48P(0) ≈ 1.22 × 10^-21Therefore, the probability of no cars running the red light at the identified intersection on May 1st is approximately 1.22 × 10^-21.

To know more about Poisson distribution, visit:

https://brainly.com/question/28437560

#SPJ11

The probability no cars run the red light at the intersection of Avenue and First Street on May 1st is 0.1353.

The appropriate distribution that should be used to calculate the probability no cars run the red light at the intersection of Avenue and First Street on May 1st is Poisson Distribution.

A Poisson Distribution is a probability distribution that gives the probability of a certain number of events happening in a set period of time, given the average number of times the event occurred in that period of time. T

he number of events occurring in a fixed period of time can be considered a random variable that follows a Poisson distribution when the events are independent and randomly distributed over the time period involved.

Formula used to calculate probability using Poisson distribution is given below:

[tex]P(x) = (e^-λ) (λ^x) / x![/tex]

Where λ = Mean (average) number of events occurring in the given time period,

x = Number of events to be calculated.

The rate at which cars run the red light at the intersection of a Avenue and First Street is given as 2 per hour.

The probability no cars run the red light at the intersection on May 1st can be calculated by using the following formula:

[tex]P(0) = (e^-2) (2^0) / 0!P(0) = (1) (1 / e^2)P(0) = 0.1353[/tex]

Therefore, the probability no cars run the red light at the intersection of Avenue and First Street on May 1st is 0.1353.

To know more about distributions, visit:

https://brainly.com/question/29664127

#SPJ11

on a certain portion of an experiment, a stastical test result yielded a p-value of 0.21

Answers

The p-value of 0.21 indicates the statistical significance of the test result.

In hypothesis testing, the p-value is the probability of obtaining a test statistic as extreme as the one observed, assuming the null hypothesis is true. A p-value of 0.21 suggests that there is a 21% chance of observing such extreme test results if the null hypothesis is true.

The interpretation of the p-value depends on the predetermined significance level (usually denoted as alpha). If the significance level is set at 0.05, for example, a p-value of 0.21 is greater than the significance level. Therefore, we would not have sufficient evidence to reject the null hypothesis at the 0.05 significance level. However, if the significance level is set at a higher value, such as 0.10, the p-value of 0.21 would be considered statistically significant, leading to the rejection of the null hypothesis.

It is important to note that the interpretation of the p-value should be done in the context of the specific hypothesis being tested and the significance level chosen.

Learn more about probability here: brainly.com/question/13604758

#SPJ11








5. Arrange these numbers in ascending order (from least to greatest) -2.6 -2.193 -2.2 -2.01

Answers

-2.6

-2.2

-2.193

-2.01

In this case, being that they are all negative numbers:

The higher the number, the smallest it is.

The smaller the number, the closer to 0 it is and will be the highest one of them all.

Find the general solution of y(4) + 2y" + 6y" + 324 + 40y = 0

Answers

To find the general solution of the given differential equation:

y(4) + 2y" + 6y' + 324 + 40y = 0

We can rearrange the equation and combine like terms:

y(4) + 2y" + 6y' + 40y + 324 = 0

Simplifying further, we have:

2y" + 6y' + 44y + 324 = 0

Now, let's solve the homogeneous version of this equation, which is obtained by setting the equation equal to zero:

2y" + 6y' + 44y = 0

To solve this homogeneous linear ordinary differential equation, we assume a solution of the form y = e^(rt), where r is a constant. Substituting this into the equation, we get:

2r^2e^(rt) + 6re^(rt) + 44e^(rt) = 0

Factoring out e^(rt), we have:

e^(rt)(2r^2 + 6r + 44) = 0

For this equation to hold, either e^(rt) = 0 (which is not possible) or 2r^2 + 6r + 44 = 0. Solving the quadratic equation, we find the roots:

r = (-6 ± √(6^2 - 4 * 2 * 44)) / (2 * 2)

r = (-6 ± √(36 - 352)) / 4

r = (-6 ± √(-316)) / 4

Since the discriminant is negative, the roots are complex. Let's write the roots as:

r = (-6 ± √316i) / 4

r = (-3 ± √79i) / 2

The general solution for the homogeneous equation is:

y_h = C1e^(-3t/2)cos(√79t/2) + C2e^(-3t/2)sin(√79t/2)

Now, to find the general solution for the original non-homogeneous equation, we can use the method of undetermined coefficients. We assume a particular solution of the form:

y_p = At + B

Substituting this into the original equation, we have:

2(0) + 6A + 44(At + B) + 324 = 0

Simplifying, we get:

6A + 44At + 44B + 324 = 0

To satisfy this equation, we equate the coefficients of like terms:

44A = 0 => A = 0

6A + 44B + 324 = 0 => 44B = -6A - 324 => B = -3/11

Therefore, the particular solution is:

y_p = (-3/11)t

Finally, the general solution of the non-homogeneous equation is the sum of the homogeneous and particular solutions:

y = y_h + y_p

y = C1e^(-3t/2)cos(√79t/2) + C2e^(-3t/2)sin(√79t/2) - (3/11)t

where C1 and C2 are arbitrary constants.

In a study of natural variation in blood chemistry, blood specimens were obtained from 284 healthy people. The concentrations of urea and of uric acid were measured for each specimen, and the correlation between these two concentrations was found to be r = 0.2291. Test the hypothesis that the population correlation coefficient is zero against the alternative that it is positive. Let α = 0.05.

Answers

Null hypothesis: Population correlation coefficient is equal to zero.

Alternate hypothesis: Population correlation coefficient is greater than zero. Level of significance: α = 0.05Calculation of test statistic: We need to calculate the test statistic which follows t-distribution. Assuming the null hypothesis, we have; r = 0. We need to calculate the degrees of freedom for the t-distribution which is given by; df = n - 2= 284 - 2= 282Using the formula for the t-test, we have; t = (r√(df))/√(1 - r²)= (0.2291√(282))/√(1 - 0.2291²)= 5.31. Using the t-distribution table, we find the p-value corresponding to the obtained t-value; p-value = P(T > 5.31)Since the alternate hypothesis is greater than zero, we calculate the p-value for right-tailed test. p-value = P(T > 5.31)≈ 0. Comparing the obtained p-value with the level of significance, we have; p-value < α∴. We reject the null hypothesis.

Conclusion: Hence, there is sufficient evidence to suggest that the population correlation coefficient is positive.

To know more about correlation, click here:

https://brainly.com/question/30116167

#SPJ11

1)What is the binomial model? You are required to name the component parts and explain the model.
2) What is the Black-Scholes-Merton model? You are required to name the component parts and explain the model.

Answers

Option pricing using a tree structure and risk-neutral probabilities to determine present values and the Black-Scholes-Merton model: Option pricing based on stock price, strike price, time, volatility, and interest rates.

1. The binomial model is a mathematical model used to price options and analyze their behavior. It consists of two main components: the binomial tree and the concept of risk-neutral probability. The binomial tree represents the possible price movements of the underlying asset over time, with each node representing a possible price level.

The model assumes that the underlying asset can only move up or down in each time period, and calculates the option value at each node using discounted probabilities. The risk-neutral probability is used to calculate the expected return of the asset, assuming a risk-neutral market. By recursively calculating option values at each node, the model provides a valuation framework for options.

2. The Black-Scholes-Merton model is a mathematical model used to price European-style options and other derivatives. It consists of several component parts.

The model assumes that the underlying asset follows a geometric Brownian motion and incorporates variables such as the current asset price, strike price, time to expiration, risk-free interest rate, and volatility. The key components of the model include the Black-Scholes formula, which calculates the theoretical option price, and the Greeks (delta, gamma, theta, vega, and rho), which measure the sensitivity of the option price to changes in different variables. The model assumes a continuous and efficient market without transaction costs, and it provides a framework for valuing options based on these assumptions.

To learn more about “the binomial model” refer to the https://brainly.com/question/15246027

#SPJ11

b. draw a hypothetical demand curve, and illustrate a decrease in quantity demanded on your graph.

Answers

A hypothetical demand curve is shown below:

A hypothetical demand curve is shown below:

Illustration of a decrease in quantity demanded on your graph is shown below:

The above demand curve shows that when price decreases from P1 to P2, the quantity demanded of the good increases from Q1 to Q2. In the second graph, the quantity demanded has decreased from Q2 to Q1 due to a decrease in any factor other than the good's price, such as income, prices of substitute products, or taste.

To know more on graph visit:

https://brainly.com/question/19040584

#SPJ11

In economics, demand refers to how much (quantity) of a good or service is desired by consumers. In a competitive market, the demand for a commodity is determined by the intersection of its price and the consumer's ability to buy it (represented by the curve known as the demand curve).

The quantity of a product demanded by consumers in a market is usually influenced by various factors, including price and other economic conditions. When the price of a good increases, consumers usually demand less of it, whereas when the price of a good decreases, consumers usually demand more of it.How to draw a hypothetical demand curve?The steps below outline how to draw a hypothetical demand curve:1. Determine the price of the product. This price will be represented on the vertical (y) axis of the graph.2. Determine the quantity of the product demanded at each price point. This quantity will be represented on the horizontal (x) axis of the graph.3. Plot each price/quantity pair on the graph.4. Connect the points to form the demand curve. Note that the demand curve is typically a downward-sloping curve. This means that as the price of the product increases, the quantity demanded decreases. Conversely, as the price of the product decreases, the quantity demanded increases.How to illustrate a decrease in quantity demanded on your graph?To illustrate a decrease in quantity demanded on a demand curve graph, one must:1. Select a price point on the demand curve.2. Move the point downward along the demand curve to indicate a decrease in quantity demanded.3. Plot the new price/quantity pair on the graph.4. Connect the new point with the other points on the demand curve to illustrate the decrease in quantity demanded.

To know more about intersection, visit:

https://brainly.com/question/12089275

#SPJ11


Solve the initial value problem below using the method of Laplace transforms. y" +7y' + 6y = 36 e 31, y(0) = -6, y'(0) = 20

Answers

Given equation is: y" + 7y' + 6y = 36e31, y(0) = -6, y'(0) = 20

To solve the initial value problem using Laplace transforms we have to take the Laplace transform of the given differential equation and solve for Y(s), and then apply the inverse Laplace transform to obtain the solution y(t). Applying the Laplace transform to the given differential equation,

we get: L{y"} + 7L{y'} + 6L{y} = 36L{e31}

Taking Laplace transform of both sides L{y"} = s²Y(s) - s y(0) - y'(0)L{y'} = sY(s) - y(0)L{y} = Y(s)

Therefore, the Laplace transform of the given differential equation is: s²Y(s) - s y(0) - y'(0) + 7sY(s) - 7y(0) + 6Y(s) = 36 / (s - 31)

Simplifying, we get: (s² + 7s + 6) Y(s) = 36 / (s - 31) + s y(0) + y'(0) + 7y(0) …… equation (1)

Substitute the given initial conditions in equation (1), we get: (s² + 7s + 6) Y(s) = 36 / (s - 31) + s(-6) + (20) + 7(-6)

Simplifying, we get: (s² + 7s + 6) Y(s) = 36 / (s - 31) - 92(s + 1) / (s + 1)(s + 6)

Now, factor the polynomial in the denominator of the right side using partial fractions. The expression 92(s + 1) / (s + 1)(s + 6) can be written as: 92(s + 1) / (s + 1)(s + 6) = A / (s + 1) + B / (s + 6) Multiplying by the common denominator,

we get: 92(s + 1) = A(s + 6) + B(s + 1)

Substituting s = -1 in the above equation, we get: 92(0) = A(5) + B(-1)

Simplifying, we get:-B = 0 or B = 0Substituting s = -6 in the above equation,

we get:92(-5) = A(0) + B(-5)

Simplifying, we get: B = 92 / 5 or A = 0

So, the expression 92(s + 1) / (s + 1)(s + 6) can be written as:

92(s + 1) / (s + 1)(s + 6) = 92 / 5 (1 / (s + 1)) + 0 (1 / (s + 6))

Now, substituting the values of A and B in the right side of equation (1),

we get:(s² + 7s + 6) Y(s) = 36 / (s - 31) - 92 / 5 (1 / (s + 1))

Applying the inverse Laplace transform to both sides, we get: y''(t) + 7y'(t) + 6y(t) = 36e31 - 92/5 e-t, y(0) = -6, y'(0) = 20

Hence, the solution of the given differential equation is y(t).

To know more about polynomial refer to:

https://brainly.com/question/15702527

#SPJ11

Assume that the amounts of weight that male college students gain their freshman year are normally distributed with a mean of u= 1.3 kg and a standard deviation of o= 4.8 kg. Complete parts (a) through (c) below.

a. If 1 male college student is randomly selected, find the probability that he gains 0 kg and 3 kg during freshman year.

b. If 4 male college students are randomly selected, find the probability that their mean weight gain during freshman year is between 0 kg and 3 kg.

c. Why can the normal distribution be used in part (b), even though the sample size does not exceed 30?

Answers

a. The probability that a randomly selected male college student gains between 0 kg and 3 kg during their freshman year is approximately 0.2877. b. The probability that the mean weight is between 0 kg and 3 kg is approximately 0.8385. c. The normal distribution can be used in part (b) because of the central limit theorem.

a. We can use the standard normal distribution to find the corresponding z-scores and then use a z-table or statistical software to find the area. The probability is approximately 0.2877.

b. The central limit theorem states that when the sample size is sufficiently large (typically greater than 30), the sampling distribution of the mean tends to be approximately normally distributed, regardless of the shape of the population distribution. In this case, even though the sample size is 4, the normal distribution can still be used because the underlying population distribution (weight gain of male college students) is assumed to be normally distributed.

c. The central limit theorem allows us to use the normal distribution for the sampling distribution of the mean, even when the sample size is small. This is because the theorem states that as the sample size increases, the sampling distribution approaches a normal distribution. In practice, a sample size of 30 or more is often used as a guideline for the applicability of the normal distribution.

Learn more about normal distribution here:

https://brainly.com/question/15103234

#SPJ11

what is the factor of 72 that is the largest perfect square

Answers

Answer:

36 is the correct answer hope it helps

In a one-tail hypothesis test where you reject He only in the lower tail, what is the p-value if ZSTAT = -1.43? Click here to view page 1 of the Normal table. Click here to view page 2 of the Normal table, The p-value is (Round to four decimal places as needed.)

Answers

p-value = 1 - 0.0764 = 0.9236 (rounded to four decimal places)

Therefore, the p-value is approximately 0.9236.

To find the p-value for a one-tail hypothesis test when rejecting the null hypothesis only in the lower tail, you need to calculate the area under the standard normal distribution curve to the left of the given Z-statistic.

Given ZSTAT = -1.43, we want to find the probability that a standard normal random variable is less than -1.43.

Using the standard normal distribution table, locate the absolute value of -1.43 (which is 1.43) and find the corresponding value in the table. The value in the table represents the cumulative probability up to that point.

Looking up the value 1.43 in the standard normal distribution table, we find the corresponding cumulative probability as approximately 0.0764.

However, since we are performing a one-tail test in the lower tail, we need to subtract this cumulative probability from 1 to get the p-value:

p-value = 1 - 0.0764 = 0.9236 (rounded to four decimal places)

Therefore, the p-value is approximately 0.9236.

Learn more about p-value:

https://brainly.com/question/13786078

#SPJ11

Suppose g is a function from A to B and f is a function from B to C. a a) What's the domain of fog? What's the codomain of fog? b) Suppose both f and g are one-to-one. Prove that fog is also one-to-one. c) Suppose both f and g are onto. Prove that fog is also onto.

Answers

a) The domain of fog is the domain of g, and the codomain of fog is the codomain of f. b) If both f and g are one-to-one, then fog is also one-to-one. c) If both f and g are onto, then fog is also onto.

a) The composition of functions, fog, is defined as the function that applies g to an element in its domain and then applies f to the result. Therefore, the domain of fog is the same as the domain of g, which is A. The codomain of fog is the same as the codomain of f, which is C.

b) To prove that fog is one-to-one when both f and g are one-to-one, we need to show that for any two distinct elements a₁ and a₂ in the domain of g, their images under fog, (fog)(a₁) and (fog)(a₂), are also distinct.

Let (fog)(a₁) = (fog)(a₂). This means that f(g(a₁)) = f(g(a₂)). Since f is one-to-one, g(a₁) = g(a₂). Now, since g is one-to-one, it follows that a₁ = a₂. Thus, we have shown that if a₁ ≠ a₂, then (fog)(a₁) ≠ (fog)(a₂). Therefore, fog is one-to-one.

c) To prove that fog is onto when both f and g are onto, we need to show that for any element c in the codomain of f, there exists an element a in the domain of g such that (fog)(a) = c.

Since f is onto, there exists an element b in the domain of g such that f(b) = c. Additionally, since g is onto, there exists an element a in the domain of g such that g(a) = b. Therefore, (fog)(a) = f(g(a)) = f(b) = c. This shows that for every c in the codomain of f, there exists an a in the domain of g such that (fog)(a) = c. Thus, fog is onto.

Learn more about codomain here:

https://brainly.com/question/17311413

#SPJ11

The approximation of 1 = Lo cos (x2 + 5) dx using simple Simpson's rule is: -0.93669 -0.65314 N This option This option -1.57923 0.54869

Answers

The approximation of the integral ∫cos(x² + 5) dx using simple Simpson's rule is approximately -0.65314.

The integral ∫cos(x² + 5) dx using simple Simpson's rule, we need to divide the integration interval into smaller subintervals and apply Simpson's rule to each subinterval.

The formula for simple Simpson's rule is:

I ≈ (h/3) × [f(x₀) + 4f(x₁) + f(x₂)]

where h is the step size and f(xi) represents the function value at each subinterval.

Assuming the lower limit of integration is a and the upper limit is b, and n is the number of subintervals, we can calculate the step size h as (b - a)/n.

In this case, the limits of integration are not provided, so let's assume a = -1 and b = 1 for simplicity.

Using the formula for simple Simpson's rule, the approximation becomes:

I ≈ (h/3) × [f(x₀) + 4f(x₁) + f(x₂)]

For simple Simpson's rule, we have three equally spaced subintervals:

x₀ = -1, x₁ = 0, x₂ = 1

Using these values, the approximation becomes:

I ≈ (h/3) × [f(-1) + 4f(0) + f(1)]

Substituting the function f(x) = cos(x² + 5):

I ≈ (h/3) × [cos((-1)² + 5) + 4cos((0)² + 5) + cos((1)² + 5)]

Simplifying further:

I ≈ (h/3) × [cos(6) + 4cos(5) + cos(6)]

Now, we need to calculate the step size h and substitute it into the above expression to find the approximation. Since we assumed a = -1 and b = 1, the interval width is 2.

h = (b - a)/2 = (1 - (-1))/2 = 2/2 = 1

Substituting h = 1 into the expression:

I ≈ (1/3) × [cos(6) + 4cos(5) + cos(6)]

Evaluating the expression further:

I ≈ (1/3) × [cos(6) + 4cos(5) + cos(6)] ≈ -0.65314

Therefore, the approximation of the integral ∫cos(x² + 5) dx using simple Simpson's rule is approximately -0.65314.

Learn more about Simpson's rule here :

brainly.com/question/30459578

#SPJ4

what is 5[cos(pi/4) = 1 sin (pi/4)] raised to the 3rd power?

Answers

The expression 5[cos(pi/4) = 1 sin (pi/4)] raised to the 3rd power  simplifies to 125.

It can be simplified as follows.

1) Evaluate the trigonometric functions inside the brackets.

cos(pi/4) = 1/sqrt(2) and sin(pi/4) = 1/sqrt(2).

So the expression becomes 5[(1/sqrt(2)) = (1/sqrt(2))]^3.

2) Simplify the expression inside the brackets.

(1/sqrt(2)) = (1/sqrt(2)) can be rewritten as 1/(sqrt(2))^2.

Since (sqrt(2))^2 = 2, the expression becomes 1/2.

3) Substitute the simplified expression back into the original expression.

The original expression is now 5(1/2)^3.

4) Evaluate the exponent.

(1/2)^3 = (1/2) * (1/2) * (1/2) = 1/8.

5) Multiply the result by 5.

5 * 1/8 = 5/8.

Therefore, the given expression simplifies to 125.

To know more about expression refer here:

https://brainly.com/question/14083225

#SPJ11

after simplifying, how many terms does the expression 4y - 6 y 2 - 9 contain?
a. 4 terms
b. 2 terms
c. 1 term
d. 3 terms

Answers

The  expression contains two terms: 4y and -6y^2. The constant term -9 is not considered a separate term since it does not contain the variable y. Hence, the answer is (b) 2 terms.

To simplify the expression 4y - 6y^2 - 9, we can combine like terms. Like terms are those that have the same variable(s) raised to the same exponent(s). In this case, we have two terms with the variable y: 4y and -6y^2.

The  coefficient 4 in 4y does not have the same exponent as the coefficient -6 in -6y^2, so these terms cannot be combined. Therefore, the expression contains two terms: 4y and -6y^2. The constant term -9 is not considered a separate term since it does not contain the variable y. Hence, the answer is (b) 2 terms.

Visit to know more about Constant:-

brainly.com/question/27983400
#SPJ11

1990s Internet Stock Boom According to an article, 21.5% of Internet stocks that entered the market in 1999 ended up trading below their initial offering prices. If you were an investor who purchased three Internet stocks at their initial offering prices, what was the probability that at least two of them would end up trading at or above their initial offering price? (Round your answer to four decimal places.)

P(X ≥ 2) =

Answers

The probability that at least two of them would end up trading at or above their initial offering price:

P(X ≥ 2) = 1 - P(X < 2)

The probability that at least two out of three Internet stocks would end up trading at or above their initial offering price, we need to calculate the complement of the probability that fewer than two stocks meet this condition.

Let's calculate the probability that fewer than two stocks would end up trading at or above their initial offering price.

P(X < 2) = P(X = 0) + P(X = 1)

The probability that a stock ends up trading below its initial offering price is 21.5%, which means the probability that it trades at or above the initial offering price is 1 - 0.215 = 0.785.

Using the binomial probability formula, where n is the number of trials (3 stocks) and p is the probability of success (0.785):

P(X = 0) = (3 C 0) * (0.215)^0 * (0.785)^3 ≈ 0.1851

P(X = 1) = (3 C 1) * (0.215)^1 * (0.785)^2 ≈ 0.4659

Therefore,

P(X < 2) = 0.1851 + 0.4659 ≈ 0.6510

Finally, we can calculate the probability as:

P(X ≥ 2) = 1 - P(X < 2) = 1 - 0.6510 ≈ 0.3490 (rounded to four decimal places)

To know more about probability refer here:

https://brainly.com/question/31828911

#SPJ11

Other Questions
An inductor is connected to an AC supply. Increasing the frequency of the supply the current through the inductor. a. decreases b. does not change c. increases Convert the radius of an Na+ ion to meters investigation 10b question 01 a. warm b. cold c. stationary d. occluded A 4.0- kg cylinder of solid iron is supported by a string while submerged in water. What is the tension in the string? The density of iron is 7860 kg/m3 and that of water is 1000 kg/m3 . A) 34 N B) 2.5 N C) 20 N D) 40 N E) 24 N in inferno, why is the leopard a good image for lust and youth? why the lion for pride and manhood, and why the wolf for avarice and age? What of the following is a key work in Brene Browns lecture.a. boxb. iceburgc. arenad. phoenix Use the concepts of anticipated and unanticipated inflation to explain why real wages in many industries in Australia have decreased. 2 MarksExplain with the support of graph(s), demand-pull and cost push inflation. Which, in your view, is the main driver of the present increase in inflation. Explain. 2 MarksAssume a newspaper article stated, "The rise in the consumer price index of 2.7 percent has increased the cost of living of an average Australian by 2.7 percent". Is this an accurate conclusion? Explain. 2 Marks Sharp Seal Computer Corp, a technology support company providing security for small businesses, reported these summarized figures (in milione) (Click the icon to view the income statement.) (Click the Try This 1 Suppose that you begin with a single E. coli baderium at time 0, and the conditions arme appropriate for the bacteria to double in population every 20 min. This growth can be modelled using the equation P= P. (2)20. 1. a. Create a table that shows the number of bacteria at 20-min intervals for 5 n. Your table might start out like this one. Time (in min) Number of Bacteria 0 20 40 Di Use your table to ostmate when there would be 10 000 bacteria 2 a. Follow the steps in the following table to algebraically determine an approximate time when there would be 10 000 bacteria. Make the assumption that the equation P=P, (2) can be used to find an approximate time where there would be 10 000 bactena Write the equation Substitute the known values for P and P 10 000-102 11235 10 000 = 220 --230 Take the logarithm of both sides of the equation, Hint: log10 000 = log 2 PRACTICE Use the power law of logarithms log, ("). n log, M. to bring down the exponent 20 Divide both sides of the equation by log 2 QUOTIUN Multiply both sides of the equation by 20. Determine a decimal approximation of t. b. How does the time you determined in 2.a. compare to your estimate from 1.b.? Human Resources: Motivating Employees through compensationDiscuss how compensation levels are determined. In the short story "The Star" the Jesuit is dismayed because what he has discovered challenges one of the following characteristics of God.Group of answer choicesOmniscienceOmnibenevolenceOmnipresenceOmnipotenceIn the short story "The Star" what startling truth does the Jesuit discover?Group of answer choicesGod destroyed the universeGod destroyed a peaceful civilizationGod destroyed all living beingsGod destroyed the Christmas Star A small car with mass 0.710 kg travels at constant speed on the inside of a track that is a vertical circle with radius 5.00 m the following figure.(Figure 1)If the normal force exerted by the track on the car when it is at the top of the track (point B) is 6.00 N, what is the normal force on the car when it is at the bottom of the track (point A)? Express your answer with the appropriate units.Figure 1of 1AF 28.1N5.00 mSubmitMy Answers Give UpIncorrect; One attempt remaining; Try AgainProvide FeedbackContinue If a company issues raw materials to production at a cost of $24900 when the standard cost is $23300, it will a. credit Material Quantity Variance for $1600. b. debit Materials Quantity Variance for $1600. c. debit Materials Price Variance for $1600. d. credit Materials Price Variance for $1600. trustee for settle Illustration 2 Adetokunbo filed a petition in bankruptcy on 30 September, 2009. His assets and liabilities are as follows: Assets N Cash in hand 5,000 Book Debts Good Doubtful 5,200 2,400 (estimated to produce N1,350) 305 760 9,000 (estimated to produce N7,500) 2,350 Bad Inventories in trade Bill Receivable Office Furniture Plant and Machinery Personal Building Personal Furniture 1,750 (estimated to produce N1,200) 6,500 (estimated to produce N4,000) 12,000 (subject to a mortgage of N9,000 3,000 (estimated to produce N2,000) Liability 30,000 Unsecured creditors Partly Secured creditors Debts outstanding not included in petition: 19,000 (estimated value of security9,200) . 6 months' rent 3,000 Office staff salary (2 months) 300 7% Loan from Mrs Adetoku 4,500 Accrued interest thereon 3 months' rate 315 120 Required: Prepare a Statement of Affairs of Adetokunbo on 30 September, 2009 if weight=gravitational forcewhy does weight= mass*gravitational field strength like aren't gravitational force and gravitational field strength and weight all the same?? pls someone help I have exams tmr A nonparametric procedure would not the first choice if we have a computation of the mode. O normally distributed ratio variables. a computation of the median. a skewed interval distribution. Jason owns Blue Corporation bonds (face value of $ 10,000), purchased on January 1, 2020 for $11,000. The bonds have an annual interest rate of 3% and a maturity date of December 31,2029. If Jason elects to amortize the bond premium, what are his taxable interest income for 2020 and the adjusted basis for the bonds at the end of 2020 (assuming straight-line amortization is appropriate)? a. $300 and $ 11,000 b. $300 and $ 10,900 c. $200 and $ 11,000 d. $ 200 and $ 10,900 Ethylene is liquefied by a throttle cooling device (an insulated valve). The entering conditions are 60 bar and 26.85C and leaves at 10 bar.(a) Set up a thermodynamic path and derived the expressions required to evaluate the thermodynamics properties needed in this problem assuming that ethylene can be described by the RedlichKwong equation of state. For example, if you choose the departure function path approach, then you have to derive the necessary departure functions to solve this problem. (b) Using the solution strategy of part (a), calculate the fraction of the inlet stream that is liquefied according to properties estimated from the RedlichKwong equation of state. Find the log of the following:a. In (x-2)-In (x+2) b. 3nx+2 in y-4 lnz c. 2[In x-ln (x+1)-In (x-1)] A 10 kg box is pulled along a horizontal surface by a force of 40.0 N which is applied at an angle of 30.0 with respect to the horizontal. The coefficient of kinetic friction between the surfaces is 0.30. What is the horizontal acceleration of the box?