Divide. Reduce your answers to lowest terms.5/8 divide (-3 3/4)

Answers

Answer 1
[tex]\text{Answer: - }\frac{1}{6}[/tex]

Given data

5/8 divided by (-3 3/4)

Firstly, convert the mixed fraction into an improper fraction

[tex]\begin{gathered} -3\text{ }\frac{3}{4}\text{ can be converted to the below improper fraction} \\ -3\text{ }\frac{3}{4}\text{ = -}\frac{(4\text{ x (3) + 3}}{4} \\ -\text{ 3}\frac{3}{4}\text{ = - }\frac{12\text{ + 3}}{4} \\ -\text{ 3 }\frac{3}{4}\text{ = - }\frac{15}{4} \\ \text{Therefore, 5/8 divided by - 15/4} \\ \frac{5}{8}\text{ / -}\frac{15}{4} \\ \frac{5}{8}\text{ x -}\frac{4}{15} \\ =\text{ }\frac{-20}{120} \\ =\text{ - }\frac{1}{6} \end{gathered}[/tex]

Answer = - 1/6


Related Questions

a. Find the value of x given that r ll s.The measure of angle 1 = (63-x)The measure of angle 2 = (72-2x)b. Find the measure of angle 1 and the measure of angle 2.

Answers

In the given illustration, angle 1 and angle 2 are corresponding angles.

Note that corresponding angles in parallel lines are congruent.

angle 1 measures (63 - x)

angle 2 measures (72 - 2x)

Since both angles are congruent with each other, equate the angles :

[tex]\begin{gathered} 63-x=72-2x \\ \text{Solve for x, put the variables to the left side and the constant to the right side :} \\ -x+2x=72-63 \\ x=9 \end{gathered}[/tex]

The measure of angle 1 will be :

[tex]63-9=54[/tex]

The measure of angle 2 will be :

[tex]72-2(9)=54[/tex]

ANSWERS :

a. x = 9

b. angle 1 = 54 degrees

angle 2 = 54 degrees

crate A exerts a force of 8320N and a pressure of 64N/cm2. crate B exerts a force of 9860N and a pressure of 29N/cm2. find the difference between the base areas of the crates in cm2

Answers

Answer:

difference in base areas = 210 cm²

Step-by-step explanation:

In order to calculate the difference in the base areas of the crates, we first need to find the base area of each crate.

To calculate the base area, we can use the formula for pressure and rearrange it to make area the subject:

[tex]\boxed{Pressure = \frac{Force}{Area}}[/tex]

⇒ [tex]Area = \frac{Force}{Pressure}[/tex]

Therefore:

•Base area of crate A = [tex]\mathrm{\frac{8320 \ N}{64 \ N/cm^2}}[/tex]

                                    = 130 cm²

• Base area of crate B = [tex]\mathrm{\frac{9860 \ N}{29 \ N/cm^2}}[/tex]

                                     = 340 cm²

Now that we know the base areas of each crate, we can easily calculate the difference between them:

difference = 340 cm² - 130cm²

                 = 210 cm²

which of the following is a function. then graph the function.

Answers

A relationship is a function if and only if for each input, there exists only one output i.e an input cannot have two or more outputs.

We can determine which of the relationship is a function by plotting a graph of the relationship.

The only correct option is the relationship:

[tex]y=x^2[/tex]

The graph of the function is shown below:

I need help on this question please?

Answers

parabola, open curve, a conic section produced by the intersection of a right circular cone and a plane parallel to an element of the cone.

What is a parabola in math?

Drawing a parabola for the quadratic function f(x) = ax2 + bx + c results in a U-shaped curve.When an is smaller than zero, the parabola's graph is downward (or opens downward).When the value of an is greater than 0, the parabola's graph ascends (or opens up). The locus of points in that plane that are equally spaced apart from the direct  x and the focus is known as the parabola.A right circular conical surface and a plane parallel to another plane that is tangential to the conical surface intersect to form a parabola, which is also known as a conic section.A parabola's general equation is written as y = a(x - h)2 + k or x = a(y - k)2 + h.Vertex here is indicated by (h, k).The typical form is y = a(x - h)2 + k.

     -9(x_6)²_1

     =  -9(x-6)1

     =-9x+54

    Differentiate  x

   -9

   -9(x-6)²

   Subtract

    d/dx(-9(x-6)

    Calculate x-6

    d/dx (-9x+54)

   -9x1-1

     -9x

  =-9

   To learn more about parabola refer

  https://brainly.com/question/25651698    

   #SPJ13

I need whit math thats all(x-2) +(x+6)

Answers

To simplify the expression (x-2) +(x+6), you have to follow these steps:

1.Get rid of the parentheses:

(x-2) +(x+6)

x -2 + x + 6

2. Combine like terms:

x + x - 2 + 6

2x + 4

So the answer is 2x + 4

4. Describe the transformation from the parent graph of y - 4 = – 2(x – 3)?. Graphboth the parent graph and the transformed graph on the grid provided. Plot at leastthree distinct points for each.

Answers

Describe the transformation from the parent graph of y - 4 = – 2(x – 3)^2. Graph

both the parent graph and the transformed graph on the grid provided. Plot at least

three distinct points for each.

we have that

the parent function is

y=x^2

Is a vertical parabola open upward with the vertex at (0,0)

the transformed function

is

y-4=-2(x-3)^2

y=-2(x-3)^2+4

Is a vertical parabola open downward with vertex at (3,4)

so

The transformations are

1) Reflection over x-axis

Rule is

(x,y) ------> (x,-y)

y=x^2 ------------------> y=-x^2

2) Vertical Dilation with a scale factor of 2

Rule

(x,y) --------> (x,2y)

y=-x^2 ----------> y=-2x^2

3) Translation 3 units at right and 4 units up

Rule is

(x,y) --------> (x+3,y+4)

y=-2x^2 --------> y=-2(x-3)^2+4

see the graph to better understand the problem

a box is filled with 3 red cards, 6 Blue cards, and 6 green cards. A card is chosen at random from the box. what is the probability that it is a red or a green card? write your answer as a fraction in simplest form

Answers

Probability of red or green card = 3/5

Explanation:

Number of red cards = 3

Number of blue cards = 6

Number of green cards = 6

Total number of cards = 6 + 6 + 3 = 15

Probability of red or green card = Probability of red card + Probability of green card

Probability of red card = number of red cards/total number of cards

Probability of red card = 3/15

Probability of green card = number of green cards/total number of cards

Probability of green card = 6/15

Probability of red or green card = 3/15 + 6/15

Probability of red or green card = 9/15

In simplest term:

Probability of red or green card = 3/5

Answer:

85% but in a fraction 17/20

Step-by-step explanation:

The function P(m) below relates the amount of time (measured in minutes)
Steve spent on his homework and the number of problems completed.
It takes as input the number of minutes worked and returns as output the
number of problems completed.
P(m) = 12 +9
Which equation below represents the inverse function M(p), which takes the
number of problems completed as input and returns the number of minutes
worked?
OA. M(p) = 6p + 54
OB. M(p) = 6p - 54
OC. M(p) = 54p - 6
OD. M(p) = 54p + 6

Answers

The inverse function of a function f in mathematics exists a function that reverses the operation of f. The number of problems completed as input and returns the number of minutes worked exists m(p) = 6p - 54.

What is meant by inverse function?

An inverse in mathematics is a function that "undoes" another function. In other words, if f(x) yields y, then y entered into the inverse of f yields the output x.

Given: P(m) = (m/6) + 9

Determine the inverse function

P(m) = (m/6) + 9

Represent P(m) as P

P = (m/6) + 9

Swap the positions of P and m

m = (p/6) + 9

We are to make p the subject.

Subtract 9 from both sides, then we get

m - 9 = (p/6) + 9 - 9

m - 9 = (p/6)

Multiply through by 6

6(m - 9) = (p/6) × 6

simplifying the above equation, we get

6(m-9) = p

6 m-54 = p

Rearranging the above equation, we get

p = 6m - 54

Swap the positions of P and m

m = 6p - 54

m(p) = 6p - 54

Therefore, the correct answer is option C. M(p)=6p - 54

The complete question is:

The function below relates the amount of time (measured in minutes) Steve spent on his homework and the number of problems completed.

It takes as input the number of minutes worked and returns as output the number of problems completed.

P(m) = (m/6)+9

Which equation below represents the inverse function M(p), which takes the number of problems completed as input and returns the number of minutes worked?

A. M(p)=54p + 6

B. M(p)=54p - 6

C. M(p)=6p - 54

D. M(p)=6p + 54

To learn more about inverse function refer to:

https://brainly.com/question/3831584

#SPJ13

Answer:6p-54

Step-by-step explanation:

Solve for r.
r - 15 / -1 = -4

Answers

Answer:

r=19

Step-by-step explanation:

15-r=-4

r=19

:]

Answer there’s no solution

I need help on this please!

Answers

Answer:

y = -2x + 2

Step-by-step explanation:

so to find the slope of the graph we must do (rise)/(run)

when we see the graph we see that when it goes DOWN 2 it also goes RIGHT 1

RISE is up or down

RUN is left or right

since it is down it is negative

so

-2 / 1

that is just -2

that is the slope

the equation for slope intercept is y = mx + b where m is the slope and b is the y intercept

so far it is y = -2x + b

the y intercept is where it crosses the y axis

that point is 2 based off of the graph

so

y = -2x + 2 is your answer

the graph shows the mass of the bucket containing liquid depends on the volume of liquid in the bucket. Use the graph to find the domain of the function.

Answers

The domain of the function for the volume of the liquid = 0 ≤ V ≤ 7.5 liters.

What is domain of a function?

The domain of a function is the complete set of possible values of the independent variable.

Also a domain of a function refers to "all the values" that go into a function.

From the  graph the domain of the function of the volume of the  of liquid in the bucket is calculated as follows;

The minimum value of the volume of liquid in the bucket = 0

The maximum value of the volume of liquid in the bucket = 7.5 liters

The domain of the function for the volume (V) of the liquid = {0, 1, 2, 3, 4, 5, 6, 7.5 liters}

0 ≤ V ≤ 7.5 liters

Thus, the domain of the function or independent variables that satisfies the function include natural numbers between 0 to 7.5 liters. That is the domain of the function is {0, 1, 2, 3, 4, 5, 6, 7.5 liters}.

Learn more about domain here: https://brainly.com/question/26098895

#SPJ1

Harriet sells prints of her photographs, and is deciding what her minimum order should be during a sale. The equation that relates to her profit, y, from a minimum order of size x is 12x - 4y = 48.


Part A

What are the x-intercept and the y-intercept of the graph of her profit?

A. X-intercept: 3; y-intercept: -12
B. X-intercept: 4; y-intercept: 12
C. X-intercept: 4; y-intercept: -12
D. X-intercept: 3; y-intercept: 12


Part B

What should her minimum order size be, to make a profit?

Answers

Consider the given linear equation,

[tex]12x-4y=48[/tex]

PART A

Substitute y=0 to obtain the x-intercept,

[tex]\begin{gathered} 12x-4(0)=48 \\ 12x=48 \\ x=4 \end{gathered}[/tex]

Thus, the x-intercept is 4 .

Substitute x=0 to obtain the y-intercept,

[tex]\begin{gathered} 12\mleft(0\mright)-4y=48 \\ -4y=48 \\ y=-12 \end{gathered}[/tex]

Thus, the y-intercept is -12 .

Therefore, option C is the correct choice

PART B

The linear equation can also be written as,

[tex]\begin{gathered} 4y=12x-48 \\ y=\frac{12}{4}x-\frac{48}{4} \\ y=3x-12 \end{gathered}[/tex]

The minimum limit to make a profit can be calculated as,

[tex]\begin{gathered} y>0 \\ 3x-12>0 \\ 3x>12 \\ x>\frac{12}{3} \\ x>4 \end{gathered}[/tex]

Note that the order of photograph must be an integer. The next integer after 4 is 5.

So the minimum order size to make a profit should be 5.

5/8p−3/4=4

A) p=95/32

B) p=26/5

C) p=38/5

Answers

[tex]\boxed{\large\displaystyle\text{$\begin{gathered}\sf \bf{\frac{5}{8}p-\frac{3}{4}=4 } \end{gathered}$}}[/tex]

Add 3/4 to both sides.

[tex]\boxed{\large\displaystyle\text{$\begin{gathered}\sf \bf{\frac{5}{8}p=4+\frac{3}{4} } \end{gathered}$}}[/tex]

Convert 4 to the fraction 16/4.

[tex]\boxed{\large\displaystyle\text{$\begin{gathered}\sf \bf{\frac{5}{8}p=\frac{16}{4} +\frac{3}{4} } \end{gathered}$}}[/tex]

Since 16/4 and 3/4 have the same denominator, add their numerators to add them together.

[tex]\boxed{\large\displaystyle\text{$\begin{gathered}\sf \bf{\frac{5}{8}p=\frac{16+3}{4} \longmapsto \ \ Add } \end{gathered}$}}[/tex]

[tex]\boxed{\large\displaystyle\text{$\begin{gathered}\sf \bf{\frac{5}{8}p=\frac{19}{4} } \end{gathered}$}}[/tex]

Multiply both sides by 8/5, the reciprocal of 5/8.

[tex]\boxed{\large\displaystyle\text{$\begin{gathered}\sf \bf{p=\frac{19}{4}\times\left(\frac{5}{8}\right) } \end{gathered}$} }[/tex]

Multiply 19/4 by 8/5 (to do this, multiply the numerator by the numerator and the denominator by the denominator).

[tex]\boxed{\large\displaystyle\text{$\begin{gathered}\sf \bf{p=\frac{19\times8}{4\times5 }\longmapsto \ Multiply } \end{gathered}$}}[/tex]

[tex]\boxed{\large\displaystyle\text{$\begin{gathered}\sf \bf{p=\frac{152}{20} } \end{gathered}$}}[/tex]

We reduce the fraction 152/20 to its minimum expression by extracting and canceling 4.

[tex]\boxed{\large\displaystyle\text{$\begin{gathered}\sf \bf{p=\frac{152}{20} \ \ \longmapsto \ p=\frac{152\div4}{20\div4}=\frac{38}{5} } \end{gathered}$}}[/tex]

Therefore, the answer is option C.
5/8p = 4 + 3/4
5/8 p= 19/4
P= 19/4 / 5/8
P= 19/4 x 8/5
P= 38/5
The answer is C

SpongeBob spins the spinner to the left. What is the probability that the spinner lands on a number greater than 6?

Answers

SpongeBob spins the spinner to the left. What is the probability that the spinner lands on a number greater than 6?​

we know that

The total numbers in the spinner are 10

The numbers that are greater than 6 are (7,8,9 and 10)------> 4 numbers

so

To find out the probability, divide the total numbers that are greater than 6 by the total number

therefore

P=4/10

Percent

P=4/10(100)

the answer is

P=40% o P=4/10 or P=0.4

At the local food stand, the vendor sells small drinks for $1.25 each and large drinks for $2.50 each. They sold 155 drinks today and made $265. How many small drinks and how many large drinks did they sell?

Answers

Answer:

98 small drinks and 57 large drinks.

Explanation:

Let's call x the number of small drinks and y the number of large drinks.

If they sold 155 drinks, we can write the following equation:

x + y = 155

In the same way, they made $265, so

1.25x + 2.50y = 265

Because each small drink cost $1.25 and each large drink cost $2.50.

Now, we can have the following system of equations

x + y = 155

1.25x + 2.50y = 265

Solving the firs equation for y, we get:

x + y - x = 155 - x

y = 155 - x

Replacing this on the second equation:

1.25x + 2.50y = 265

1.25x + 2.50(155 - x) = 265

Then, solving for x, we ge:

1.25x + 2.50(155) - 2.50(x) = 265

1.25x + 387.5 - 2.50x = 265

-1.25x + 387.5 = 265

-1.25x + 387.5 - 387.5 = 265 - 387.5

-1.25x = -122.5

-1.25x/(-1.25) = -122.5/(-1.25)

x = 98

Finally, we can find the value of y replacing x = 98

y = 155 - x

y = 155 - 98

y = 57

Therefore, they sell 98 small drinks and 57 large drinks.

Rewrite the polynomial .22 – 52 + 6 as 2? + m2 + n2 +6, where m. n = 6 and m +n=-5. What are the values of m and n?

Answers

Answer:

m = -2 and n = -3

Explanation

Given the polynomial

x^2 - 5x + 6

Rewrite as x^2 +mx + nx + 6

x^2 - 2x - 3x + 6

Compare

mx = -2x

m = -2

Similarly;

nx = -3x

n = -3

Hence m = -2 and n = -3

calculate the area of this trapiziuem

Answers

Answer:

............where is it?

Of the 120 families, approximately___pay more than $5710 annually for day car per child.

Answers

1) Considering a Normal Distribution, then we can write out the following:

[tex]P(X>5710)=P(X-\mu>5710-6000)=P(\frac{X-\mu}{\sigma}>\frac{5710-6000}{1000})[/tex]

Note that we're dealing with probabilities.

2) Let's find out the Z-score resorting to a table, we get:

[tex]Z=\frac{x-\mu}{\sigma}=\frac{5710-6000}{1000}=-0.29[/tex]

2.2) So we can infer from 1 and 2:

[tex]P(X>5710)=P(Z>-0.29)=0.6141[/tex]

Notice that this distribution refers to 120 families

Solve this system of equations usingthe substitution method.y = x + 9y = -4x – 612] [UN

Answers

The given system of equations is

[tex]\begin{gathered} y=x+9\rightarrow(1) \\ y=-4x-6\rightarrow(2) \end{gathered}[/tex]

We will substitute y in equation (2) by equation (1)

[tex]x+9=-4x-6[/tex]

Now, add 4x to both sides

[tex]\begin{gathered} x+4x+9=-4x+4x-6 \\ 5x+9=-6 \end{gathered}[/tex]

Subtract 9 from both sides

[tex]\begin{gathered} 5x+9-9=-6-9 \\ 5x=-15 \end{gathered}[/tex]

Divide both sides by 5

[tex]\begin{gathered} \frac{5x}{5}=\frac{-15}{5} \\ x=-3 \end{gathered}[/tex]

Substitute x by -3 in equation (1) to find y

[tex]\begin{gathered} y=-3+9 \\ y=6 \end{gathered}[/tex]

The solution of the system is (-3, 6)

savings 50,000 in 30 years with a saving compounded monthly at an interest rate of 6%. How much would I need to deposit a month?

Answers

The amount that needs to be deposited to have a saving of $50,000 in 30 years at the given interest rate is $8,302.10.

How is the amount required to have a saving of $50,000 ?

The compound interest formula is expressed as;

P = A / (1 + r/n)^nt

Where P is principal, A is amount accrued, r is interest rate is compound period and t is time elapsed.

Given the data in the question;

Accrued amount A = $50,000Interest rate r = 6%Compounded monthly n = 12Elapsed time t = 30 yearsPrincipal P = ?

First, convert rate from percent to decimal.

Rate r = 6%

Rate r = 6/100

Rate r = 0.06 per year

To determine the principal, plug the given values into the formula above and solve or P

P = A / (1 + r/n)^nt

P = $50,000 / (1 + 0.06/12)^( 12 × 30 )

P = $50,000 / (1 + 0.05)³⁶⁰

P = $50,000 / (1.05)³⁶⁰

P = $8,302.10

Therefore, the principal investment is $8,302.10.

Learn more about compound interest here: brainly.com/question/27128740

#SPJ1

7=1/4ax, solve for a

Answers

The given expression is

[tex]7=\frac{1}{4}ax[/tex]

Solving for a means that we need to isolate that variable.

First, we need to multiply the equation by 4

[tex]7\cdot4=4\cdot\frac{1}{4}ax\rightarrow28=ax[/tex]

Second, we divide the equation by x

[tex]\frac{28}{x}=\frac{ax}{x}[/tex]

Therefore, the answer is

[tex]a=\frac{28}{x}[/tex]

You are told that a 95% confidence interval for the population mean of a normally distributed variable is 17.3 to 24.5. if the population was 76, what was the sample standard deviation?

Answers

The sample standard deviation of the population with confidence interval of 95% is 13.57

What is standard deviation?

Standard deviation gives a value that measures how much the given value differ from the mean.

How to find the sample standard deviation

Given data form the question

95% confidence interval

population mean of a normally distributed variable is 17.3 to 24.5

population was 76

Definition of variables

confidence interval = CI = 95%

mean = X = 17.3 to 24.5

taking the average, X = 21.45

standard deviation = SD = ?

Z score = z = 1.96

from z table z score of 95%confidence interval = 1.96

sample size = n = 76

The formula for the confidence interval is given by

[tex]CI=X+Z\frac{SD}{\sqrt{n} }[/tex]   OR   [tex]X-Z\frac{SD}{\sqrt{n} }[/tex]

[tex]24.5=21.45+1.96\frac{SD}{\sqrt{76} }[/tex]

[tex]24.5-21.45=1.96\frac{SD}{\sqrt{76} }[/tex]

[tex]3.05=1.96\frac{SD}{\sqrt{76} }[/tex]

[tex]\frac{3.05}{1.96} =\frac{SD}{\sqrt{76} }[/tex]

[tex]1.5561 =\frac{SD}{\sqrt{76} }[/tex]

SD = √76 * 1.5561

SD = 13.56577

SD ≈ 13.57

The standard deviation is solved to be 13.57

Learn more about standard deviation at: https://brainly.com/question/24298037

#SPJ1

What is the distance from Point B (-1, 11) to line y = -1/3x - 6?
Answer in simplest radical form

Answers

The distance from Point B (-1, 11) to line y = (-1 ÷ 3x) - 6 is 15.811.

The distance from the point B(-1 , 11) to the line y= (-1 ÷ 3x) - 6 is given by the distance formula d = (|Ax1 + By1 + C|) ÷ (√(A² + B²)).

Comparing the equation  y= (-1 ÷ 3x) - 6 with the standard forms Ax + By+ C = 0.

It is clear that the coefficient of x, A = -1 ÷ 3.

The coefficient of y, B = -1. The constant C = -6 and the points x1 = -1 and y1 = 11.

Substituting these data in the equation the distance d = (|(-1÷3)×(-1)+ (-1)×11 + (-6)|) ÷ √((-1 ÷ 3)² + (-1)² ) solving the equation the distance d becomes,

d = 15.811.

Learn more about the distance between two points at

https://brainly.com/question/17144692?referrer=searchResults

#SPJ9

If triangles MNP is an equilateral triangle, find x and the measure of each side.

Answers

The value of x = 13

Each side of the equilateral triangle is: 27 units.

What is an equilateral Triangle?

A triangle is classified or defined as an equilateral triangle if all its sides are of the same length. This means, all equilateral triangles have side lengths that are congruent.

Since triangle MNP is said to be an equilateral triangle, all its sides would be equal to each other. Therefore:

MN = NP = MP

Given the following:

MN = 4x - 25

NP = x + 14

MP = 6x - 51

Thus:

MN = NP

Substitute

4x - 25 = x + 14

4x - x = 25 + 14

3x = 39

x = 39/3

x = 13

MN = 4x - 25 = 4(13) - 25 = 27

MN = NP = MP

NP = 27

MP = 27

Learn more about equilateral triangles on:

https://brainly.com/question/15294703

#SPJ1

Rewrite the expression (17x3 – 12x2 + 6x - 4)/(x – 1) in the form q(x) + r(x)/b(x) where q(x) = quotient, r(x) = remainder, and b(x) = divisor, using the synthetic division method.

Answers

Given that

The equation is

[tex]\frac{17x^3-12x^2+6x-4}{x-1}[/tex]

and we have to convert it into the form of

[tex]\begin{gathered} q(x)+\frac{r(x)}{b(x)} \\ where\text{ q\lparen x\rparen is quotient, r\lparen x\rparen is remainder, and b\lparen x\rparen is divisor.} \end{gathered}[/tex]

Proofs involving a transversal

Answers

Thus, it is clear that the lines RS and TV in the preceding diagram are parallel to each other

What are the properties of parallel lines?

If you extend a set of lines indefinitely, they will remain parallel and never cross each other even though they are on the same plane. The symbol || represents the collection of parallel lines. All parallel lines are always equally spaced apart. Investigate the characteristics of parallel lines.

When two lines in a plane are stretched infinitely in both directions and do not cross, they are said to be parallel.

To solve the given question we know,

angle 1= angle 2 and lines RV // TS

angle 4= angle 3(interior angles on parallel lines are equal)

angle 1=angle 4 (vertically opposite angles are equal )

angle 1= angle 3 (angle 4=angle 1)

angle 4=angle 2( angle 1=angle 4)

Now we can see that the sum of base angles of the diagram will be 180 because

180-angle 3= angle STV

angle 4=angleSTV+180 (angle 3=angle4)

we proved that the diagram is a parallelogram because base angles of the same side are supplementary:

Therefore , we can conclude that the lines RS // TV in the preceding diagram .

To learn more about properties of parallel lines ,click here:

https://brainly.com/question/2437149

#SPJ13

What is the sum of the first five terms in this series? 6 - 6/3+6/9-6/27+•••
A 61/81
B 16
C 122/27
D 20/3​

Answers

The sum of the first five terms in this series is 4 14/27.

What are fractions?

Fractions are used to depict the components of a whole or group of items. Two components make up a fraction. The numerator is the number that appears at the top of the line. It specifies how many identically sized pieces of the entire event or collection were collected. The denominator is the quantity listed below the line. The total number of identical objects in a collection or the total number of equal sections that the whole is divided into are both displayed. A fraction can be expressed in one of three different ways: as a fraction, a percentage, or a decimal. The first and most popular way to express a fraction is in the form of the letter ab. Here, a and b are referred to as the numerator and denominator, respectively.

The first five terms

6

-6/3

6/9

-6/27

+6/81

The first thing to do is change all the fractions denominators to 81.

Sum = 6*81/81 - 6(27)/81 + 6 × 9/81 - 6 × 3/81 + 6/81

Now add

Sum = 366/81

Sum = 4 14/27

Sum = 4.5185

Recall the first term. It was increased by 6 × 81/81. Nothing is affected by the 81 over 81 in terms of value. 6 × 81/81 remains 6. It merely makes combining it with the other members of the series simpler.

To know more about fractions ,visit:

brainly.com/question/10708469

#SPJ1

Write the following expression in its simplest form-2/3(9/2x + 15/2)

Answers

Given the expression

-2/3(9/2x + 15/2)

Open the parenthesis;

= -2/3(9/2 x) - 2/3(15/2)

= -18x/6 - 30/6

= -3x - 5

Hence the expression in its simplest form is -3x - 5

I need help with this question I not sure but my answer was number 3 i for sure

Answers

To solve this problem, we have to compute the circumference of a circle of diameter:

[tex]d=840ft.[/tex]

Recall that the circumference of a circle is given by the following formula:

[tex]C=d\pi,[/tex]

where d is the diameter.

Therefore, the circumference of the reservoir is:

[tex]C=\frac{22}{7}*840ft=2640ft.[/tex]

Answer:[tex]2640ft.[/tex]

Randy has $12 which he decides to put into his savings account. Every week Randy does chores to earn a $6 allowance which he continues to save and put into his savings account.Like Randy, Becky decides to be more responsible with her money and also save her money. Right now she owes her parents $8. Becky also earns $7 a week for doing chores, If both Randy and Becky save up beginning today whose savings account would reach $50first?A. RandyB. BeckyC. They would reach $50 at the same time.D. There is not enough given information to determine who will save up $50 first

Answers

Randy's initial money = $12

Randy's earnings per week = $6

Becky's initial money = -$6 (she owes )

Becky's earnings per week = $7

Number of weeks: x

The equation for each:

• Randy:

50 = 12 + 6x

• Becky:

50 = -6 + 7x

Solve each for x:

Randy:

50= 12 + 6x

50-12 = 6x

38 = 6x

38/6=x

x= 6.3

Becky:

50= -8 + 7x

50+8 =7x

58=7x

58/7=x

x= 8.28

Randy will take 6.33 weeks and Becky 8.28 weeks.

Answer:

A. Randy

Other Questions
An archer releases an arrow with an initial velocity of 24 feet per second at a height of 16 feet. The path the arrow takes can be modeled using the function f(x)=16x2+24x+16, where f(x) represents the height, in feet, of the arrow and x represents the time the arrow travels in seconds. How many seconds until the arrow hits the ground? Round your answer to the nearest hundredth if necessary. Do not include units in your answer. what percentage of the eggs were not at room temperature? do not include (%) in the answer round the answer to the nearest whole number . Who are OBrien and the brotherhood in 1984 by George Orwell The Aztecs weapon was made of obsidian. Tlahuicole was made of feathers. Why do you think the Aztecs did it this way? If tomorrow is Friday, then today is Thursday. 7.25 to the nearest tenth Why do economic members choose according to the principle that marginal benefit equals marginal cost? One employee of a computer store is paid a base salary of 2000 a month plus an 8% commision on all sales over 7000 during the month. how much must the employee sell in one month to earn a total of 4000 for the month Find the slope of the line shown in the graph below enter your answer as a simplified improper fraction if necessary HELP ASAP WILL GIVE THE BRAINLIEST TO ANYONE WHO ANSWERS THIS CORRECTLY HELP ASAP i need help with subtracting,multiplying,dividing,and adding fractions. Marigold Corporation purchased 4,000 shares of its $8 par value common stock for $268,000 on August 1. It will hold these shares in the treasury until resold. On December 1, the corporation sold 2,400 shares of treasury stock for cash at $73 per share. Journalize the treasury stock transactions. Determine the rate of change on the graphs below Add/Subtract. Express your answer as a polynomial in standard formMultiply/Dividea) (5^3)(6^4)b) (6^7)(1/2^8)c) (1/2 ^5)(1/3 ^9)d) 14^5 7^2 Jefferson emphasizes that the colonistsa. desire a form of self-governmentb. expect guidance from the British Parliamentc. want to rebel against all formal rules and regulationsd. need an army to restore law and order the length of a rectangle is increasing at a rate of 5 cm/s and its width is increasing at a rate of 7 cm/s. when the length is 11 cm and the width is 9 cm, how fast is the area of the rectangle increasing (in cm2/s)? Would you want to ride in a driverless car? Why or why not? The book of Acts begins with the ascension of Christ and His commission to the apostles to take the gospel message from Jerusalem to the end of the world. a bag contains 10 white, 12 blue, 13 red, 7 yellow, and 8 green wooden balls. a ball is selected from the bag and kept. you then draw a second ball and keep it also. what is the probability of selecting one white ball and one blue ball? round your answer to four decimal places. Whats -4(x-2) show step by step !