What are the coordinates of P', the image of P(-4, 0) under the translation (x-3, y + 6)?

Answers

Answer 1

Answer:

I really don't understand much about math sometimes I need help

Answer 2
(-7,6) because the x value is -4 and the rule for x is to subtract 3, the y value is 0 and the rule for y is to add 6

Related Questions

Using the distance formula, d = √(x2 - x1)2 + (y2 - y1)2, what is the distance between point (0, 5) and point (3, -1) rounded to the nearest tenth?

Answers

The distance between the points is 6.7 units

What is distance?

The distance between two points is the number of points between them

How to determine the distance?

The points are given as

(0, 5) and (3, -1)

The distance formula is given as

d = √(x2 - x1)^2 + (y2 - y1)^2

Substitute the given points in the above distance formula

So, we have

d = √(0 - 3)^2 + (5 + 1)^2

Evaluate the difference and the sum

d = √(-3)^2 + 6^2

Evaluate the exponents

d = √9 + 36

Evaluate the sum

d = √45

This gives

d = 6.7

Hence, the distance is 6.7 units

Read more about distance at

https://brainly.com/question/7243416

#SPJ1

Given z1 = 5(cos 240° + isin 240°) and z2 = 15(cos 135° + isin 135°), what is the product of z1 and z2?

Answers

By multiplying z1 and z2, we get:

[tex]\begin{gathered} z1\times z2=5(cos240+isin240)15(cos135+isin135) \\ z1\times z2=75(cos240+isin240)(cos135+isin135) \end{gathered}[/tex]

Applying the distributive property:

[tex]\begin{gathered} z1\times z2=75(cos240+\imaginaryI s\imaginaryI n240)(cos135+\imaginaryI s\imaginaryI n135) \\ z1\times z2=75(cos240\times cos135+cos240\times isin135+\mathrm{i}s\mathrm{i}n240\times cos135+\imaginaryI s\imaginaryI n240\times\imaginaryI s\imaginaryI n135) \\ z\times1z\times2=75(cos240\times cos135+cos240\times\imaginaryI s\imaginaryI n135+\imaginaryI s\imaginaryI n240\times cos135-s\imaginaryI n240\times s\imaginaryI n135) \end{gathered}[/tex]

In order to simplify this, we can use the following trigonometric identities:

[tex]\begin{gathered} sin(\alpha+\beta)=sin(\alpha)cos(\beta)+cos(\alpha)sin(\beta) \\ cos(\alpha+\beta)=cos(\alpha)cos(\beta)-sin(\alpha)sin(\beta) \end{gathered}[/tex]

By taking β as 135 and α as 240, we can write:

[tex]\begin{gathered} is\imaginaryI n(240+135)=isin(375)=is\imaginaryI n(240)s\imaginaryI n(135)+icos(240)s\imaginaryI n(135) \\ cos(240+135)=cos(375)=cos(240)cos(135)-s\imaginaryI n(240)s\imaginaryI n(135) \end{gathered}[/tex]

Then, by grouping some terms of the expression, we get:

[tex]z\times1z\times2=75(cos(375)+isin(375))[/tex]

375° is equivalent to 15° (375 - 360 = 15), then the product of z1 and z2 can be finally written as:

[tex]z1\times z2=75(cos(15)+\imaginaryI s\imaginaryI n(15))[/tex]

Then, option A is the correct answer

1. m/ASN = 63°
m/GSN =

Answers

The measure of angle ∠GSN is 27°.

What do we mean by angles?An angle is a figure in plane geometry that is created by two rays or lines that have a common endpoint. The Latin word "angulus," which means "corner," is the source of the English word "angle." The common endpoint of two rays is known as the vertex, and the two rays are referred to as the sides of an angle.

So, a measure of ∠GSN:

The given angle ASG is 90° (Given)∠ASN = 63°

Then, ∠GSN will be:

∠ASN + ∠GSN = ∠ASG63 + ∠GSN = 90∠GSN = 90 - 63∠GSN = 27°

Therefore, the measure of angle ∠GSN is 27°.

Know more about angles here:

https://brainly.com/question/25716982

#SPJ3

need help with this problem Its not the first one

Answers

Solution:

In geometry, a line segment is a part of a line that is bounded by two distinct endpoints and contains every point on the line that is between its endpoints. The angle of rotational symmetry or angle of rotation is the smallest angle for which the figure can be rotated to coincide with itself.

A rotation is a transformation in a plane that turns every point of a figure through a specified angle and direction about a fixed point. The fixed point is called the center of rotation

Rotation of a line does not change the length of the line segments

Reflection does not preserve orientation.

Dilation (scaling), rotation, and translation (shift) do preserve it.

Hence,

The final answer is the THIRD OPTION

four inches of a (somewhat magnified ) ruler is shown. use the ruler to give the length of the gray bar, to the nearest sixteenth of an in. write answer as a mixed #. (simplify as much as possible)

Answers

We have the following:

We have that 4 is equal to 64/16

[tex]\frac{4\cdot16}{1\cdot16}=\frac{64}{16}[/tex]

Thefore:

The bar is found in 2 and 15 more lines, each line is 1/16

[tex]\frac{2\cdot16}{1\cdot16}+\frac{15}{16}=\frac{32}{16}+\frac{15}{16}=\frac{47}{16}=2\frac{15}{16}[/tex]

8/11 when rounded is closer to 1 than 0? True False

Answers

Answer: False?

Step-by-step explanation:

Answer:

It is closer to [tex]1[/tex] than [tex]0[/tex], so the statement is True.

Step-by-step explanation:

Step 1: Finding the decimal form of [tex]\frac{8}{11}[/tex]

Upon simplification on a calculator, we can see that the exact value of [tex]\frac{8}{11}[/tex] is:

[tex]0.7272727273[/tex]

Let's round this to [tex]0.73[/tex] for an easier time.

Step 2: Identifying the value's difference from 1 and 0

We have found the value of the fraction to be [tex]0.73[/tex].

If we subtract the value from [tex]1[/tex], we get:

[tex]1-0.73\\=0.27[/tex]

If we find the difference between it and [tex]0[/tex], we get:

[tex]0.73-0\\=0.73[/tex]

As we can see, the value is [tex]0.27[/tex] units away from [tex]1[/tex], but is [tex]0.73[/tex] units away from [tex]0[/tex].

We can clearly see that it is closer to [tex]1[/tex], so the statement is True.

Sydney purchased a $50.00 gift for a baby shower. She uses a coupon that offers 20% off. How much will Sidney spend on the gift after the coupon?

Answers

From the scenario, the following are the pieces of information being given:

Price of Gift = $50

Discount Coupon used = 20% Off

Let's compute how much will Sidney spend on the gift after the coupon.

Step 1: Let's determine the equivalent amount of the discount.

[tex]\text{ Amount to be Discounted = Price of Gift x }\frac{Percentage\text{ of Discount}}{100}[/tex][tex]\text{ = \$50 x }\frac{20}{100}\text{ = \$50 x 0.20}[/tex][tex]\text{ = \$10}[/tex]

Step 2: Let's deduct the equivalent amount of 20% to the actual price of the gift.

[tex]\text{ = \$50 - \$10}[/tex][tex]\text{ = \$40}[/tex]

Therefore, Sydney will spend $40 on the gift after the coupon.

Which number line shows all the values of x that make the inequality - 3x +1 <7 true?A2-5-4--3-2-10123B.5in-4-3-2-1012.34С5-5-4-3-2-1012345D-4-3-2.12345

Answers

First let's solve the given inequality:-

[tex]\begin{gathered} -3x+1<7 \\ -3x<6 \\ x>-2 \end{gathered}[/tex]

So the correct option is (D).

A certain television is advertised as a 5-inch TV. If the width of the TV is 4 inches, how many inches tall is the TV

Answers

Answer:

The TV is 3 inches tall.

[tex]3\text{ inches}[/tex]

Explanation:

Given that the width of the TV is

[tex]4\text{ inches}[/tex]

And the TV is 5 inch TV, which means its diagonal is;

[tex]d=5\text{ inches}[/tex]

The height of the TV can be calculated using the Pythagoras Theorem;

[tex]\begin{gathered} c^2=a^2+b^2 \\ b=\sqrt[]{c^2-a^2} \end{gathered}[/tex]

substituting the diagonal and the width;

[tex]\begin{gathered} b=\sqrt[]{5^2-4^2} \\ b=\sqrt[]{25-16} \\ b=\sqrt[]{9} \\ b=3\text{ inches} \end{gathered}[/tex]

Therefore, the TV is 3 inches tall.

[tex]3\text{ inches}[/tex]

What is the slope of the line passing through (3, 0) and (4, 0) ?

A) 0
B) 3/4
C) 4/3
D) Undefined

Answers

[tex]m=\frac{y_{2}-y_{1} }{x_{2} -x_{1} } \\m=\frac{0-0}{4-1} \\m=\frac{0}{1} \\m=0[/tex]

⇒0 divided by any number is 0

OPTION A IS THE ANSWER.

Answer:

A

Step-by-step explanation:

calculate the slope m using the slope formula

m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]

with (x₁, y₁ ) = (3, 0 ) and (x₂, y₂ ) = (4, 0 )

m = [tex]\frac{0-0}{4-3}[/tex] = [tex]\frac{0}{1}[/tex] = 0

write a point slope equation for the line that has a slope 5and passes the point (6,22).

Answers

Solution:

The general equation of a line of slope m passing through a point A is expressed as

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ \text{where} \\ (x_1,y_1)\text{ is the coordinate of the point A through which the line passes through} \end{gathered}[/tex]

Given that the line has a slope of 5, and passes through the (6, 22), we have

[tex]\begin{gathered} m=5 \\ x_1=6 \\ y_1=22 \end{gathered}[/tex]

thus,

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ \Rightarrow y-22=5(x-6) \end{gathered}[/tex]

Hence, the point-slope equation for the line is expressed as

[tex]y-22=5(x-6)[/tex]

Which is the solution to the equation: 0.435 + x = 0.92*x = 1.355O x= 0.595x = 0.4950 x = 0.485Send me a copy of my responses.

Answers

To answer this question, we need to subtract 0.435 to both sides of the equation as follows:

[tex]0.435-0.435+x=0.92-0.435\Rightarrow x=0.485_{}[/tex]

Therefore, the solution for x in this equation is x = 0.485 (last option).

​(d) Find the domain of function R. Choose the correct domain below.

Answers

Answer:

d

Step-by-step explanation:

The number of years must be non-negative. This eliminates all of the options except for d.

solve the equation for x

6x + 8 = 50

Answers

Answer:

x=7

Step-by-step explanation:

To solve the equation for x, isolate it on one side of the equation.

6x+8=50

Subtract by 8 from both sides.

6x+8-8=50-8

Solve.

50-8=42

6x=42

Divide by 6 from both sides.

6x/6=42/6

Solve.

Divide.

42/6=7

[tex]\Rightarrow \boxed{\sf{x=7}}[/tex]

Therefore, the solution is x=7, which is the correct answer.

I hope this helps, let me know if you have any questions.

[tex]\huge\text{Hey there!}[/tex]


[tex]\mathsf{6x + 8 = 50}[/tex]

[tex]\large\text{SUBTRACT \boxed{\textsf 8} to BOTH SIDES}[/tex]

[tex]\mathsf{6x + 8 - 8 = 50 - 8}[/tex]

[tex]\large\text{CANCEL out: \boxed{\mathsf{8 - 8}} because it gives you 0}[/tex]

[tex]\large\text{KEEP: \boxed{\mathsf{50 - 8}} because it help solve for the x-value}[/tex]

[tex]\mathsf{6x = 50 - 8}[/tex]

[tex]\large\text{New equation: } \mathsf{6x = 42}[/tex]

[tex]\large\text{DIVIDE \boxed{\mathsf{6}} to BOTH SIDES sides}[/tex]

[tex]\mathsf{\dfrac{6x}{6} = \dfrac{42}{6}}[/tex]

[tex]\large\text{CANCEL out: \boxed{\mathsf{\dfrac{6}{6}}} because it gives you 1}[/tex]

[tex]\large\text{KEEP: \boxed{\mathsf{\dfrac{42}{6}}} because it gives you the x-value}[/tex]

[tex]\mathsf{x = \dfrac{42}{6}}[/tex]

[tex]\mathsf{x = 7}[/tex]


[tex]\huge\text{Therefore, your answer should be: \boxed{\mathsf{x = 7}}}\huge\checkmark[/tex]


[tex]\huge\text{Good luck on your assignment \& enjoy your day!}[/tex]


~[tex]\frak{Amphitrite1040:)}[/tex]

The manager of a new restaurant plans on ordering place-mats for the maximum number of diners, which is 279. Suppose the place-mats come in boxes of 24. Write a division expression that could be used to determine the number of boxes he needs to order.\

Answers

The number of boxes he needs to place = 279÷ 24 = 11.625 ≈ 12.

What is meant by division ?

Multiplication is the opposite of division. If 3 groups of 4 add up to 12, then 12 divided into 3 groups of equal size results in 4 in each group.

Creating equal groups or determining how many people are in each group after a fair distribution is the basic objective of division.

In the aforementioned scenario, you would need to place four donuts in each group in order to divide 12 donuts into three similar groups. Thus, 12 divided by 3 will result in the number 4.

Dividend: Divisor x Quotient + Remainder

Given : Number of diners = 279

And the number of boxes = 24

Thus to find out the number of boxes he needs to place = 279÷ 24 = 11.625 ≈ 12.

To know more about division visit;

https://brainly.com/question/20699915

#SPJ9

PLEASE HELP !!

When a right triangle with a hypotenuse of 1 is placed in the unit circle, which sides of the triangle correspond to the x- and y-coordinates?

Answers

The adjacent side of the central angle is the x-coordinate and the opposite side of the central angle is the y-coordinate

A pair of numbers that use the horizontal and vertical separations from the two reference axes to define a point's location on a coordinate plane. typically expressed by the x-value and y-value pair (x,y).

The hypotenuse is the radius of a unit circle whose origin serves as its center. Allow being the central angle.

x = Adjacent Side of the central angle

y = Opposite Side of the Central angle

The x-coordinate is the central angle's adjacent side, while the y-coordinate is its opposite side.

To read more about Coordinates, visit https://brainly.com/question/14755181

#SPJ1

A true-false test contains 11 questions. In how many different ways can this test be completed. (Assume we don't care about our scores.)Your answer is :

Answers

Let's suppose that 1 = TRUE and 0 = FALSE, we want to find how many combinations we can do with 11 zeros and ones, in fact, it's:

[tex]\begin{gathered} \text{ 000 0000 0000} \\ \text{ 000 0000 0001} \\ \text{ 000 0000 0010} \\ \text{ 000 0000 0011} \\ ... \\ \text{ 111 1111 1111} \end{gathered}[/tex]

To evaluate the number of combinations we can do:

[tex]C=2^{11}[/tex]

2 because we can pick 2 different options (true or false) and 11 because it's the number of questions, then

[tex]\begin{gathered} C=2^{11} \\ \\ C=2048 \end{gathered}[/tex]

We have 2048 different ways that this test can be completed.

I need help with problem 7.Use the figure to find the values of x, y, and z that makes triangle DEF similar to triangle GHF.

Answers

ANSWER

• x = 12

,

• y = 16

,

• z = 7

EXPLANATION

Because the triangles are similar, we have that:

• The ratio between corresponding sides is constant:

[tex]\frac{DE}{GH}=\frac{EF}{GF}=\frac{DF}{HF}[/tex]

• Corresponding angles are congruent:

[tex]\begin{gathered} \angle D\cong\angle H \\ \angle E\cong\angle G \\ \angle F\cong\angle F \end{gathered}[/tex]

We know that the measure of angle E is 16°, so the measure of angle G must be the same because they are congruent,

[tex]16\degree=2(x-4)\degree[/tex]

With this equation, we can find x. First, divide both sides by 2,

[tex]\begin{gathered} \frac{16}{2}=\frac{2(x-4)}{2} \\ \\ 8=x-4 \end{gathered}[/tex]

And then, add 4 to both sides,

[tex]\begin{gathered} 8+4=x-4+4 \\ \\ 12=x \end{gathered}[/tex]

Hence, x = 12.

Now we know that the length of side EF is,

[tex]EF=x-5=12-5=7[/tex]

To find y and z, we will use the proportions we got at the top of this explanation,

[tex]\frac{DE}{GH}=\frac{EF}{GF}=\frac{DF}{HF}[/tex]

Replace with the known values and the expressions with y and z,

[tex]\frac{25}{6z+8}=\frac{7}{14}=\frac{24}{3y}[/tex]

With the first two, we can find z,

[tex]\frac{25}{6z+8}=\frac{7}{14}[/tex]

Simplify the right side,

[tex]\frac{25}{6z+8}=\frac{1}{2}[/tex]

Rise both sides to the exponent -1 - i.e. flip both sides of the equation,

[tex]\frac{6z+8}{25}=2[/tex]

Multiply both sides by 25,

[tex]\begin{gathered} 25\cdot\frac{(6z+8)}{25}=2\cdot25 \\ \\ 6z+8=50 \end{gathered}[/tex]

Subtract 8 from both sides,

[tex]\begin{gathered} 6z+8-8=50-8 \\ 6z=42 \end{gathered}[/tex]

And divide both sides by 6,

[tex]\begin{gathered} \frac{6z}{6}=\frac{42}{6} \\ \\ z=7 \end{gathered}[/tex]

Hence, z = 7.

Finally, with the last two proportions, we can find y,

[tex]\frac{7}{14}=\frac{24}{3y}[/tex]

The first two steps are the same we did to find z: simplify the left side and flip both sides,

[tex]2=\frac{3y}{24}[/tex]

Multiply both sides by 24,

[tex]\begin{gathered} 24\cdot2=24\cdot\frac{3y}{24} \\ \\ 48=3y \end{gathered}[/tex]

And divide both sides by 3,

[tex]\begin{gathered} \frac{48}{3}=\frac{3y}{3} \\ \\ 16=y \end{gathered}[/tex]

Hence, y = 16.

Need help with his practice problem, having troubleIt has an additional picture of a graph. Please help me with the graph, I will send a pic

Answers

Given the function:

[tex]f(x)=\sin (\frac{\pi x}{2})[/tex]

To graph the function, we will identify the maximum and the minimum points

As we can see, the coefficient of the function = 1

So, the maximum will be at f = 1

And the minimum will be at f = -1

The period of the function will be as follows:

[tex]p=\frac{2\pi}{\frac{\pi}{2}}=4[/tex]

So, beginning from the point (0, 0) then rise till we reach the maximum at ((1, 0) then complete the sine wave

The graph of the function will be as shown in the following picture:

Find the length of the third side. If necessary, round to the nearest tenth.914

Answers

The given trinagle is a right angle triangle. let the missing side be x. To find x, we would apply the pythagorean theorem which is expressed as

hypotenuse^2 = one leg^2 + other leg^2

From the triangle,

hypotenuse = 14

one leg = 9

other leg = x

Thus, we have

[tex]\begin{gathered} 14^2=9^2+x^2 \\ 196=81+x^2 \\ x^2\text{ = 196 - 81 = 115} \\ x\text{ = }\sqrt[]{115} \\ x\text{ = 10.72} \end{gathered}[/tex]

To the nearest tenth, the length of the third side is 10.7

What is the end behavior of the polynomial function?

Drag the choices into the boxes to correctly describe the end behavior of the function.
Put responses in the correct input to answer the question. Select a response, navigate to the desired input and insert the response. Responses can be selected and inserted using the space bar, enter key, left mouse button or touchpad. Responses can also be moved by dragging with a mouse.
f(x)=6x9−6x4−6 f(x)=−3x4−6x+4x−5

Answers

The end behavior of each function is given as follows:

f(x) = 6x^9 - 6x^4 - 4, as x -> -∞, f(x) -> -∞ and as x -> ∞, f(x) -> ∞.f(x) = -3x^4 - 6x + 4x - 5, as x -> -∞, f(x) -> -∞ and as x -> ∞, f(x) -> -∞.

End behavior of a function

The end behavior of a function is given by the limits of the function as x goes to infinity, both negative and positive infinity, giving how the function behaves to the left and to the right of the graph.

For a polynomial function, only the term with the highest exponent is considered for the calculation of the limit, which is a standard rule for limits when x goes to infinity.

The first function is given by:

f(x) = 6x^9 - 6x^4 - 4.

Then the limits that define the end behavior of the function are given as follows:

lim x -> -∞ x^9 = (-∞)^9 = -∞.lim x -> ∞ x^9 = (∞)^9 = ∞.

The second function is given by:

f(x) = -3x^4 - 6x + 4x - 5.

Then the limits that define the end behavior of the function are given as follows:

lim x -> -∞ -x^4 = -(-∞)^4 = -∞.lim x -> ∞ -x^4 = -(∞)^4 = -∞.

A similar problem, also about the end behavior of a function, is presented at https://brainly.com/question/28884735

#SPJ1

Helppppp!!!! Please!!

Answers

n > 39/4 is value of quartic equation.

What does quartic equation mean?

A fourth-degree equation, often known as a quartic equation, is one that reduces a quartic polynomial to zero and has the formula: where a 0. A quartic function's derivative is a cubic function.

For a quadratic ax² + bx +c , the sign of its determinant, given by

 Δ = b²- 4ac

"determines" the nature of its roots. In particular, if Δ<0 , then the quadratic has two distinct non-real roots.

Now, we have

3z² - 9z = n - 3

3z² - 9z - (n - 3)  = 0

with determinant

Δ = (-9)² - 4 .3( n - 3 ) = 117 - 12n

Solve for  such that Δ < 0

Δ = 117 - 12n < 0 ⇒  12n > 117

n > 117/12

n > 39/4

Learn more about quartic equation

brainly.com/question/28593533

#SPJ13

It took 12 men 5 hours to build an airstrip. Working at the same rate, how many additional men could have been hired in order for the job to have taken 1 hour less?

A) Two
B) Three
C) Four
D) Six

Answers

Answer:

B

Step-by-step explanation:

hello the question is if it took 12 men 5 hours to build an age is working at the same rate how many additional men could have been hired in order for the job to have taken 1 hour less ok so we have to find that how many extra may be required to complete the job for a strip 1 hour less than five hours that is 4 hours ok bye have to complete the airstrip in 4 hours and they have to find that how many experiment we have to required for that we will assume that let extra number of number of extra man bhi X show the number of men when we are finishing in it in 4 hours would be 12 + X ok

would be the number of men now and time required would be equal to 1 hour less than 5 hours that is 4 hours ok no from the given data we can say that one cares if strip x 12 men and fibres ok so all vacancy job correct so vacancy job per man are would be 1 divided by 12 in 25 this is the job or the amount of a strip that is completed when

one man works for one hour ok so this is the amount of the job that is done for men power and we have we have this number of men that are not want working and the number of hours that their working for so for one job we will need for one job would be best job per man per hour into number of men into number of hour ok and we have 1 equal to number of Doberman per Rs 1 by 2 11 25 and number of men we have already know that 12 + 6 is the number of men that we will require 12 + X number

forces were less than 5 that is 44 4312 so it would give us 12 + X / 3515 1 to 15 of this site it would give us 12 + X equal to 15 which implies X is equals to 15 - 12 and X is equals to 3 significant required 3 more men to complete the job in Porus dancer is 3 which is given is be in the question make you

Which answer choice shows two hundred and two thousandths?A) 200.02B) 200.202C) 202.02D) 202.002

Answers

Given

two hundred two and two thousandths.

Answer

202.002

Option D is correct

13. Write an equation of the line that passes through the points (-7, 6) and (3, -4 )in slope-
intercept form.

Answers

Answer:

Firstly we need to find the gradient of give two points as follows;

M= y

Answer:

Answer: y = -x - 1

Step-by-step explanation:

- Consider a straight line passing through (x, y) from the origin (0, 0). That line with a positive gradient of m and meets at a point (0, c) [y-intercept]

- It has a general equation as below;

[tex]{ \rm{y = mx + c}} \\ [/tex]

- So, consider the line given in our question; Let's find its slope m first;

[tex]{ \rm{slope = \frac{y _{2} - y _{1} }{x _{2} - x _{1} } }} \\ [/tex]

- From the points given in the question, (-7, 6) and (3, -4)

x_1 is -7x_2 is 3y_1 is 6y_2 is -4

[tex]{ \rm{m = \frac{ - 4 - 6}{3 - ( - 7)} }} \\ \\ { \rm{m = \frac{ - 10}{10} }} \\ \\ { \underline{ \rm{ \: m = - 1 \: }}}[/tex]

- Therefore, our equation so far is y = -x + c. Our line has a negative slope that means it slants from top to bottom, its origin is its y-intercept

- Consider point (3, -4);

[tex]{ \rm{y = - x + c}} \\ { \rm{ - 4 = - 3 + c}} \\ { \rm{c = - 1}}[/tex]

- y-intercept is -1

hence equation is y = -x - 1

[tex]{ \boxed{ \delta}}{ \underline{ \mathfrak{ \: \: beicker}}}[/tex]

which variable has a set of zero pairs as a coefficients? (x or y)2x + 3y=20-2x + y=4

Answers

Answer:

The variable that has a set of zero pairs as a coefficients is;

[tex]x[/tex]

Explanation:

We want to find the variable that has a set of zero pairs as a coefficients.

Zero pair is a pair of number that sum up to give zero.

Given the system of equation;

[tex]\begin{gathered} 2x+3y=20 \\ -2x+y=4 \end{gathered}[/tex]

The pair of coefficient of x is;

[tex]\begin{gathered} 2\text{ and -2} \\ 2+-2=2-2=0 \end{gathered}[/tex]

The pair of coefficient of y is;

[tex]\begin{gathered} 3\text{ and 1} \\ 3+1=4 \end{gathered}[/tex]

So, since the coefficient of x sum up to give zero.

The variable that has a set of zero pairs as a coefficients is;

[tex]x[/tex]

These two equations look very similar at first. What is the difference in how you would solve them?



`\frac{x-2}{3}=5` `\frac{x}{3}-2=5`

Answers

The difference in how we would solve them is that there is a different order of steps.

We are given two equations.The two equations look similar, but there is a different order of steps in order to solve them.The first equation is :(x-2)/3 = 5Multiply both the sides by 3.x-2 = 15Add 2 on both sides.x = 17Hence, the solution of the first equation is x = 17.The second equation is :(x/3)-2 = 5Add 2 on both sides.x/3 = 7Multiply both the sides by 3.x = 21Hence, the solution of the second equation is x = 21.

To learn more about equations, visit :

https://brainly.com/question/10413253

#SPJ1

2^3= 8 is equivalent to log, C = D.cand D

Answers

we have

2^3= 8

Applying log both sides

log(2^3)=log(8)

Apply property of log

3log(2)=log(8)

therefore

C=3 and D=log(8)

mr. Morales mix for 4 4/5 pound of macaroni and cheese and brings it to the 5th grade party. the kids ate 3/4 of the total amount that mr. Morales brought. he took the rest home then gave 3/4 of a pound of the macaroni and cheese to Mr. kang the next day. how many pounds of macaroni and cheese is left over for mr. Morales to eat

Answers

Convert the Mixed number to an Improper fraction:

- Multiply the Whole number by the denominator.

- Add the product to the numerator.

- Use the same denominator.

Then:

[tex]4\frac{4}{5}=\frac{(4)(5)+4}{5}=\frac{20+4}{5}=\frac{24}{5}[/tex]

Then, the total amount of macaroni and cheese Mr. Morales brought was:

[tex]\frac{24}{5}lb[/tex]

After the kids ate macaronis and cheese, the amount he took home was:

[tex]\frac{24}{5}lb-(\frac{24}{5}lb)(\frac{3}{4})=\frac{6}{5}lb[/tex]

After he gave some macaroni and cheese to Mr. Kang the next day, the amount of macaroni and cheese (in pounds) left for mr. Morales to eat, is the following:

[tex]\frac{6}{5}lb-(\frac{6}{5}lb)(\frac{3}{4})=\frac{3}{10}lb[/tex]

The answer is:

[tex]\frac{3}{10}lb[/tex]

A right triangle has an area of 54 ft2 and a hypotenuse of 25 ft long. What are the lengths of its other two sides?

Answers

By theorem we have the following:

[tex]h^2=a^2+b^2[/tex]

And, we are given:

[tex]A=\frac{a\cdot b}{2}\Rightarrow2A=a\cdot b[/tex]

Then:

[tex]\Rightarrow4A^2=a^2b^2\Rightarrow4A^2=a^2(h^2-a^2)[/tex][tex]\Rightarrow a^4-h^2a^2+4A^2=0[/tex]

Now, we replace h and A:

[tex]a^4-(25)^2a^2+4(54)^2=0[/tex]

And solve for a:

[tex]a^4-625a^2+11664=0[/tex]

Then, the possible values for a are:

[tex]a=\begin{cases}a_1=-\frac{29}{2}-\frac{\sqrt[]{409}}{2} \\ a_2=\frac{29}{2}-\frac{\sqrt[]{409}}{2} \\ a_3=\frac{\sqrt[]{409}}{2}-\frac{29}{2} \\ a_4=\frac{29}{2}+\frac{\sqrt[]{409}}{2} \\ \end{cases}[/tex]

We can see that a1, and a2 are not solutions, therefore a2 and a4 are.

So, the two possible b sides are then:

[tex]b_2=\sqrt[]{25^2-(\frac{29}{2}-\frac{\sqrt[]{409}}{2})^2}\Rightarrow b_2\approx24.99[/tex]

and:

[tex]b_4=\sqrt[^{}]{25^2-(\frac{29}{2}+\frac{\sqrt[]{409}}{2})^2}\Rightarrow b_{4\approx}15.50[/tex]

So, the lengths of the two sides can be:

a = 4.38 and b = 24.99

or

a = 24.61 and b = 15.50

Other Questions
A certain video game console uses 154 watt-hours of energy each hour.The console used 276 hours last year.How many watt-hours of energy did the console use?***Show the equation you used to solve this problem.Use any method to solve this problem. You must show all your work. Imagine that you could increase the gravitational force on Earth to 200% its current force. What would life be like? Be sure to answer these questions in your response: How would your weight change? What challenges would this increase cause? What benefits would this increase bring about? Would you choose to keep the gravity increase? Why or why not?(100 POINTSS, ASAP PLS!) Yasmin is taking a multiple choice test with a total of 20 points available. Each question is worth exactly 1 point. What would be Yasmin's test score (out of 20) if she got 2 questions wrong? What would be her score if she got x questions wrong? Water would be consideredLivingNon-LivingDead What is a modern day society example for Platos allegory of the cave? (Todays issues, society, politics, etc) A student receives the following grades with and A worth 4 points, a B worth 3 point, a C worth 2 points, and a D worth 1 point. What is the students weighted mean grade point score?B in 2 three-credit classes D in 1 three-credit classA in 1 four-credit classC in 1 four-credit classMean grade point is ___ the city wants to acquire private land for a park. the city can obtain the land by paying fair value under the right of a) eminent domain. b) escheat. c) police power. d) taxation. Daniyar paid his April FlashCard bill in full. His May bill shows an average daily balance of $270.31 and a monthly periodic rate of 1.65%. What is the finance charge on Daniyar's May statement? What does Manjiro mean when he describes the garden as a tranquil prison ________ interference occurs when old information hinders the recall of newly learned information, while ________ interference happens when information learned more recently hinders the recall of older information. What critique of society does Kurt Vonnegut convey through the satire "Harrison Bergeron", and how do the characters develop the message? a deficiency of vitamin b12 can cause . a deficiency of vitamin b12 can cause . scurvy bone diseases nerve damage neural tube defects several factors account for the movement of water up xylem vessels. which single factor is most important in pulling water toward the top of a tall tree? Prime Factorization(See attachment for more info)Thank you. What was the cotton gin, and how did this influence the southern economy during the Antebellum period?Ps: Can anyone that responds be very detailed, please? Determine which integer will make the inequality 4x + 6 < 2x + 12 false. S:{1} S:{1} S:{4} S:{4} Select the correct answer.This graph represents a quadratic function. what is the formula to find circumference one quarterof a circle? PLEASE HURRY! IM TIMED! 100 POINTSRead the excerpt from The Odyssey.'O Cyclops! Would you feast on my companions?Puny, am I, in a Caveman's hands?How do you like the beating that we gave you,you dam ned can nibal? Eater of guestsunder your roof! Zeus and the gods have paid you!'According to this excerpt, Odysseusis fearful of the Cyclops.is prideful and overly confident.has been weakened by the Cyclops.has regrets about staying on the island. Which expression is equivalent to the given expression? \frac{\left(ab^{2}\right)^{3}}{b^{5}}