The fund balance at the end of 2019 will be $8,000.
The given problem has four different parts, where we are supposed to calculate the accumulation of funds at the end of 2019 in different scenarios.
Scenario 1In the first scenario, the first deposit is made on December 31, 2016, and interest is compounded annually.
Using the FVA of $1 table; Payment: $2,000n = 4i = 12%
Fund balance 12/31/2019: $9,559
Hence, the fund balance at the end of 2019 will be $9,559.Scenario 2In the second scenario, the first deposit is made on December 31, 2015, and interest is compounded annually.
Using the FVAD of $1 table;Payment: $2,000n = 4i = 12%
Fund balance 12/31/2019: $10,706 Therefore, the fund balance at the end of 2019 will be $10,706.Scenario 3In the third scenario, the first deposit is made on December 31, 2015, and interest is compounded quarterly. Using the FV of the $1 chart, we get the following calculation:
Deposit Date i = n = Deposit Fund Balance 12/31/2015 3% 16 $2,000 $3,20912/31/2016 3% 12 $2,000 $2,85212/31/2017 3% 8 $2,000 $2,53412/31/2018 3% 4 $2,000 $2,251
The interest rate is 3%, and the payment is $2,000. Hence, the fund balance at the end of 2019 will be $10,846.Scenario 4In the fourth scenario, the first deposit is made on December 31, 2015, interest is compounded annually, and interest earned is withdrawn at the end of each year.
Deposit Amount No. of Payments Interest left in Fund Fund Balance 12/31/2019$2,000 $8,000 Hence, the fund balance at the end of 2019 will be $8,000.
Learn more about fund balance at: https://brainly.com/question/30999589
#SPJ11
What is the measure of the unknown segment?
Answer:6
Step-by-step explanation:
Simplify the following expression. COSX + Sinx - tanx
The expression COSX + Sinx - tanx can be simplified by combining trigonometric identities.
We can use the trigonometric identities to simplify each term in the expression:
COSX + Sinx:
We know that sin(x) = cos(π/2 - x). Therefore, we can rewrite Sinx as Cos(π/2 - x):
COSX + Cos(π/2 - x)
tanx:
We know that tanx = sinx / cosx. Therefore, we can rewrite tanx as sinx/cosx:
sinx / cosx
Now, let's combine the terms:
COSX + Cos(π/2 - x) - sinx / cosx
Using the sum-to-product formula for cosine (Cos(A + B) = CosA * CosB - SinA * SinB), we can rewrite the expression as:
CosX * Cos(π/2) - SinX * Sin(π/2) - sinx / cosx
Since Cos(π/2) = 0 and Sin(π/2) = 1, the expression simplifies to:
0 - 1 - sinx / cosx = -1 - sinx / cosx
Therefore, the simplified expression is -1 - sinx / cosx.
Learn more about trigonometric identities here:
https://brainly.com/question/24377281
#SPJ11
estimate each product 49.2×10.3
Identify two ratios that are equivalent to 3:5
Help plzz I need the length of "b" and the answers and the steps to find that answer??? Plz help don't have a lot of time to submit this! Plz don’t give me a file it won’t work plz type the answer if you know it ty
Answer:
Use pythagorean theorem.
Step-by-step explanation:
The length of the shorter sides are 1 & 4
1^2+4^2=c^2
1+16=c^2
17=c^2
So, the length, rounded to the nearest whole inch, would be 4.
To find the perimeter, you need to find the side lengths first.
The short sides are 6 & 7.
6^2+7^2=c^2
36+49=c^2
85=c^2
So the length for that would be 8, in the nearest whole number.
Add all of the side lengths together.
6+7+8= 21
The perimeter is 21.
Jamie was surveying students about their use of the new science lab in a school. Which question in the survey is a statistical question?
Complete Question is:
Jamie was surveying students about their use of the new computer lab in a school. Which question in the survey is a STATISTICAL QUESTION?
A.) How qualified is the trainer at the computer lab?
B.) Where is the computer lab located in the school?
C.) What is the number of learning stations at the computer lab?
D.) How many class projects did you complete using the computer lab?
Answer:
D.) How many class projects did you complete using the computer lab?
The answer is D because the question is directly related to the use of their new computer lab and the number of projects the students have completed in the computer lab. This is directly related to the survey since it is carried out for the students using computer lab.
An assignment model with 3 tasks and 4 resources will have how many constraints, assuming no special constraints and not including non-negativity? 12
7
8
4
13
Which of the following is not part of assignment models?
Binary Constraints
Resources
Tasks
Warehouses
All of the above are a part of assignment models.
Which of the following statements will lead to an infeasible solution?
Each task only requires one resource. Each resource can only complete one task. There are 4 tasks and 4 resources.
Each task only requires one resource. Each resource can only complete one task. There are 4 tasks and 6 resources.
The supply for Node A is 550 and the supply for Node B is 600. The demand for Node C is 700. The demand for Node D is 400.
The supply for Node A is 375 and the supply for Node B is 525. The demand for Node C is 450 and the demand for Node D is 500.
More than one option above will lead to an infeasible solution.
The correct answers are:
An assignment model with 3 tasks and 4 resources will have 12 constraints, assuming no special constraints and not including non-negativity.
Warehouses are not part of assignment models.
The statement "Each task only requires one resource. Each resource can only complete one task. There are 4 tasks and 6 resources" will lead to an infeasible solution.
Therefore, the correct options are:
12
Warehouses
The statement "Each task only requires one resource. Each resource can only complete one task. There are 4 tasks and 6 resources."
Learn more about binary constraints here:
https://brainly.com/question/31476642
#SPJ11
Z is a standard normal random variable. The P(1.41 < z < 2.85) equals
A) 0.4772
B) 0.3413
C) 0.8285
D) None of the other answers is correct
The correct answer is 0.4772.
Step-by-step explanation: We know that Z is a standard normal random variable.
The standard normal distribution has a mean of 0 and a standard deviation of 1. It is also symmetric around the mean with 50% of the area to the left and 50% to the right of the mean.
The area under the standard normal curve is always equal to 1.
Now, we need to calculate the probability of the interval (1.41 < z < 2.85).
We know that the total area under the standard normal curve is 1. Therefore, we can calculate the required probability by finding the area between the two given values on the standard normal curve.
Using a standard normal distribution table, we can find the area corresponding to each value as shown below: Z (from the table)1.41 0.41922.85 0.4978
The area between these two values can be calculated as follows: P(1.41 < z < 2.85) = P(z < 2.85) - P(z < 1.41) = 0.49784 - 0.4192 = 0.07864
So, P(1.41 < z < 2.85) equals 0.07864 or approximately 0.4772.
To know more about the standard normal distribution table visit:
https://brainly.com/question/12632407
#SPJ11
The well-known psychologist Dr. Elbod has established what he calls his Generalized Anxiety Scale (GAS). The GAS, which is a scale from 0 to 10, measures the "general anxiety" of an individual, with higher GAS scores corresponding to more anxiety. (Dr. Elbod's assessment of anxiety is based on a variety of measurements, both physiological and psychological.) The bivariate data below give the GAS score (denoted by x) and the number of hours of sleep last night (denoted by y) for each of the fifteen adults in a study. The least-squares regression line for these data has equation y = 8.42 -0.27%. This line, along with a scatter plot of the sample data, is shown below. GAS score, X Sleep time, y (in hours) 5.0 5.8 3.2 7.1 6.6 6.3 10+ 1.0 7.4 8.1 6.6 9+ X X 2.0 X 8.1 6.6 9.0 X Sleep time (in hours) 7 X x 6.0 8.1 X X X X 1.5 8.6 6 4.1 6,8 5 3.4 7.6 5.6 U 10 8.0 8.8 5.4 GAS score 6.6 7.1 3.7 8.7 Based on the study's data and the regression line, complete the following. Х s ? (a) For these data, GAS scores that are less than the mean of the GAS scores tend to be paired with sleep times that are (Choose one) the mean of the sleep times. (b) According to the regression equation, for an increase of one in GAS score, there is a corresponding decrease of how many hours in sleep time?
The regression line is y = 8.42 - 0.27x and there is a corresponding decrease of 0.27 hours in sleep time.
Given below is the calculation of the mean, variance, and standard deviation of GAS scores.
X f fx x^2 3.2 1 3.2 10.24 3.4 1 3.4 11.56 3.7 1 3.7 13.69 4.1 1 4.1 16.81 5 1 5 25 5.4 1 5.4 29.16 5.6 1 5.6 31.36 5.8 1 5.8 33.64 6 1 6 36 6.3 1 6.3 39.69 6.6 2 13.2 43.56 7.1 1 7.1 50.41 7.4 1 7.4 54.76 8 1 8 64 8.1 2 16.2 65.61 8.6 1 8.6 73.96 8.7 1 8.7 75.69
Total 15 131.8
Mean = sum of x*f/sum of f = 131.8/15 = 8.78
To find the variance of the given data set, use the formula:
Variance (s²) = (Σx² / n) - (mean)²
Variance = (520.75 / 15) - 76.96 = 8.977
The standard deviation is the square root of the variance, so:
Sd = sqrt(8.977) = 2.996
For these data, GAS scores that are less than the mean of the GAS scores tend to be paired with sleep times that are more than the mean of the sleep times.
According to the regression equation, for an increase of one in GAS score, there is a corresponding decrease of 0.27 hours in sleep time.
To learn more about regression
https://brainly.com/question/28178214
#SPJ11
Which of the following equations represents a line that is perpendicular toy = -2x+4 and passes through the point, (4, 2)?
A. y=-3x +2
B. y - x
O C. y - 3x+4
O D. y = -2x
The point-slope form is y - y₁ = m(x - x₁), where (x₁, y₁) represents the given point and m is the slope. The equation of the line that is perpendicular to y = -2x + 4 and passes through the point (4, 2) is given by option D: y = -2x.
To determine which equation represents a line perpendicular to y = -2x + 4 and passes through the point (4, 2), we need to consider the slope of the given line. The equation y = -2x + 4 is in slope-intercept form (y = mx + b), where the coefficient of x (-2 in this case) represents the slope of the line.
Since we are looking for a line that is perpendicular to this given line, we need to find the negative reciprocal of the slope. The negative reciprocal of -2 is 1/2. Therefore, the slope of the perpendicular line is 1/2.
Now, we can use the point-slope form of a line to find the equation. The point-slope form is y - y₁ = m(x - x₁), where (x₁, y₁) represents the given point and m is the slope.
Substituting the values (4, 2) for (x₁, y₁) and 1/2 for m, we get:
y - 2 = (1/2)(x - 4).
Simplifying this equation, we find:
y - 2 = (1/2)x - 2.
Rearranging the terms, we obtain:
y = (1/2)x.
Therefore, option D, y = -2x, represents the equation of the line that is perpendicular to y = -2x + 4 and passes through the point (4, 2).
Learn more about point-slope form here:
https://brainly.com/question/29503162
#SPJ11
This is a scale drawing of a flag. The scale factor of a drawing to the actual flag is represented by the ratio 1:18. What is the area in square inches of the actual flag.
Answer:
2:36
Step-by-step explanation:
i don't know for my answer
To observe a session of the state senate, 18 students are visiting the state capitol. They will tour the capital in groups with x chaperones.
Complete the table. How many students will be in each group if x = 9?
Answer:9
Step-by-step explanation:
uppose V1 and V2 are both uniformly distributed between 0.2 and 0.8, and their probability distribution is modelled by using a Gaussian copula with a correlation coefficient of rho=0.5. Write down the joint probability Prob(V1<0.5, V2<0.3) in terms of the cumulative bivariate normal distribution function: M(U1
The joint probability, Prob(V1 < 0.5, V2 < 0.3), of two uniformly distributed variables V1 and V2, modelled using a Gaussian copula with a correlation coefficient of ρ = 0.5.
Given that V1 and V2 are uniformly distributed between 0.2 and 0.8, we need to transform these variables to standard normal variables before calculating the joint probability. The Gaussian copula is commonly used for this purpose.
The transformation from the uniform distribution to the standard normal distribution can be achieved using the inverse of the cumulative distribution function (CDF) of the standard normal distribution. Let Φ denote the CDF of the standard normal distribution. The transformed variables, denoted as U1 and U2, can be calculated as follows:
U1 = Φ^(-1)(V1)
U2 = Φ^(-1)(V2)
Since the correlation coefficient between U1 and U2 is ρ = 0.5, we can calculate the joint probability using the bivariate normal distribution function with mean 0, standard deviation 1, and correlation coefficient 0.5. Let Φ2 denote the cumulative bivariate normal distribution function.
[tex]Prob(V1 < 0.5, V2 < 0.3) = Prob(U1 < Φ^(-1)(0.5), U2 < Φ^(-1)(0.3))[/tex]
[tex]= Φ2(Φ^(-1)(0.5), Φ^(-1)(0.3); ρ = 0.5)[/tex]
By evaluating the bivariate normal distribution function at the given values, we can obtain the joint probability.
Learn more about joint probability here:
https://brainly.com/question/32099581
#SPJ11
To write down the joint probability Prob(V1 < 0.5, V2 < 0.3) in terms of the cumulative bivariate normal distribution function, we need to utilize the properties of the Gaussian copula and the correlation coefficient.
PLEASE HELP ME! NO LINKSSSSSS!!!
In four days, your family drives 5/7 of a trip. Your rate of travel is the same throughout the trip. The total trip is 1250 miles. In how many more days will you reach your destination?
In 4 days your family drive 5/7 of a trip. Your rate of travel is the same throughout the trip. The total trip is 1250 miles. How many more days until you reach your destination?
Find the amount traveled in one day by dividing
(5/7)/4 = 5/28 of the trip
How many days would it take to add up to 1
1/(5/28) = 5.6 days total
since we already traveled for 4 days, we have 1.6 more days to go
The volume of a sphere is 36π cubic inches. What is the radius of the sphere?
Answer 2.05
Step-by-step explanation: hope this helps
1. Using the .05 level of significance, run a z- test given the following:
n = 74, p = 5/74 Po = 10%
A. The computed z value 0.91 is greater than the critical value -1.96.
B. Based on the evidence on hand that the computed z statistic - 0.91 lies outside the rejection region, we cannot reject the null hypothesis.
C. The computed z value -0.91 is lesser than the critical value -1.96.
D. Based on the evidence on hand that the computed z statistic 0.91 lies inside the rejection region, we cannot reject the null hypothesis.
We can see that the computed z value lies inside the non-rejection region. Hence, we cannot reject the null hypothesis based on the evidence on hand.Therefore, the correct option is B. Based on the evidence on hand that the computed z statistic - 0.91 lies outside the rejection region, we cannot reject the null hypothesis.
The given values for the problem are: n = 74, p = 5/74, Po = 10%.
The significance level is given by alpha = 0.05 (given in the problem).
The null hypothesis and alternate hypothesis are as follows:H0: p = 0.10 Ha: p < 0.10.
The formula to calculate the z-statistic is given by:z = [tex](p - Po) / √[(Po(1 - Po))/n].[/tex]
Substituting the given values,z = [tex](5/74 - 0.10) / √[(0.10(0.90))/74] = -0.9138.[/tex]
Using the standard normal distribution table, the critical value for z at alpha = 0.05 for a left-tailed test is -1.645.
The computed z value is -0.9138 and the critical value at alpha = 0.05 is -1.645.
To know more about value, visit:
https://brainly.com/question/30145972
#SPJ11
A local charity receives 1/3 of funds raised during a craft fair and a bake sale. The total amount given to the charity was $137.45. How much did the bake sale raise?
(NEED ANSWER ASAP!!)
Answer:
$412.35
Step-by-step explanation:
Answer: $412.35
Step-by-step explanation:
$137.45 x 3 = $412.35 for the total that the bake sale raised.
What is equivalent ratio of 5:8:4 and explain how u got it
this is example
So, first we need to write the given ratio as fraction,
= 8/18
= (8 × 2)/(18 × 2)
= 16/36
= 16 : 36 (one equivalent ratio),
So, 16 : 36 is an equivalent ratio of 8 : 18.
Now we will find another equivalent ratio of 8 : 18 by using division.
Similarly, first we need to write the given ratio as fraction,
= 8/18
= (8 ÷ 2)/(18 ÷ 2)
= 4/9
= 4 : 9 (another equivalent ratio)
So, 4 : 9 is an equivalent ratio of 8 : 18.
Therefore, the two equivalent ratios of 8 : 18 are 16 : 36 and 4 : 9.
2. Frame two equivalent ratios of 4 : 5.
Solution:
To find two equivalent ratios of 4 : 5 we need to apply multiplication method only to get the answer in integer form.
First we need to write the given ratio as fraction,
= 4/5
= (4 × 2)/(5 × 2)
= 8/10
= 8 : 10 is one equivalent ratio,
Similarly again, we need to write the given ratio 4 : 5 as fraction to get another equivalent ratio;
= 4/5
= (4 × 3)/(5 × 3)
= 12/15 is another equivalent ratio
Therefore, the two equivalent ratios of 4 : 5 are 8 : 10 and 12 : 15.
Note: In this question we can’t apply division method to get the answer in integer form because the G.C.F. of 4 and 5 is 1. That means, 4 and 5 cannot be divisible by any other number except 1.
The two equivalent ratios of 5:8:4 are 8: 10 and 12: 15.
What is a fraction?The fraction is defined as the division of the whole part into an equal number of parts. In mathematics, ratios are used to determine the relationship between two numbers it indicates how many times is one number to another number.
First, we need to write the given ratio as a fraction,
F= 8/18
F= (8 × 2)/(18 × 2)
F= 16/36
F= 16 : 36 (one equivalent ratio),
16: 36 is an equivalent ratio of 8: 18.
Find another equivalent ratio of 8: 18 by using division. Similarly, first, we need to write the given ratio as a fraction,
F= 8/18
F= (8 ÷ 2)/(18 ÷ 2)
F= 4/9
F= 4 : 9 (another equivalent ratio)
4: 9 is an equivalent ratio of 8: 18.
Therefore, the two equivalent ratios of 5:8:4 are 16: 36 and 4: 9.
To know more about equivalent ratio follow
https://brainly.com/question/2328454
#SPJ5
Help please I’m a little confused
Answer:
answer is a . x²-8x+16=32
x²-8x=32-16
If 3 out of 4 people use a certain headache
medicine, how many in a city of 150,400
will use this medicine?
(A) 118, 200
(B) 37,600
(C) 50, 133
(D) 112,800
Answer:
(D) 112,800
Step-by-step explanation:
75%x150,400= 112,800
112,800 use the headache medicine.
Answer:
option D
Step-by-step explanation:
Out of 4 , 3 use headache medicine . So the fraction is 3/4 .
Total number of people in city = 150,400 .
So ,
⇒ n = 3/4 × Population
⇒ n = 3/4 × 150,400
⇒ n = 112,800
Hence option D is correct.help pleaseee i don’t understand thisss
Answer:
The answer is;
box A:3/2
box B:2/3
Find the area of the triangle with vertices: Q(2,-1,1), R(3,-2,-2), S(5,1,-1).
The area of the triangle with vertices: Q(2,-1,1), R(3,-2,-2), S(5,1,-1) is 6.5 square units.
To find the area of the triangle with vertices: Q(2,-1,1), R(3,-2,-2), S(5,1,-1), we can use the formula Area of triangle = 1/2 * |(x2-x1) (y3-y1)-(x3-x1)(y2-y1)|
where, x1, y1, x2, y2, x3 and y3 are the coordinates of the given triangle Q(2,-1,1)
corresponds to x1=2, y1=-1R(3,-2,-2)
corresponds to x2=3, y2=-2S(5,1,-1)
corresponds to x3=5, y3=1
We can substitute these values in the above formula to get Area of triangle = 1/2 * |(x2-x1) (y3-y1)-(x3-x1)(y2-y1)|= 1/2 * |(3-2)(1-(-1)) - (5-2)(-2-(-1))| = 1/2 * |-4 - 9| = 1/2 * 13 = 6.5
Know more about area of the triangle here:
https://brainly.com/question/29156501
#SPJ11
Is it possible for the rug to have an area of 71.25 square feet? If it is possible, give approximate dimensions of the rectangle and explain your work. If it is not possible, explain why not.
Answer:
Yes 2*35.625
Step-by-step explanation:
Just divide by two and now you have dimensions for a rug that has an area of 71.25
Yes, Is it possible for the rug to have an area of 71.25 square feet.
What is mean by Rectangle?A rectangle is a two dimension figure with 4 sides, 4 corners and 4 right angles. The opposite sides of the rectangle are equal and parallel to each other.
We have to given that;
A rug weaver wants to create a large rectangular rug.
Now, From the figure;
Area (S) = (8 + x) (9 - x)
= - x² + x + 72
= - (x² - x + 1/4) + 1/4 + 72
= - (x - 1/2)² + 72.25
Hence,
S (max) = 72.25 square feet
And, 72.25 > 71.25
Thus, Is it possible for the rug to have an area of 71.25 square feet.
Learn more about the rectangle visit:
https://brainly.com/question/2607596
#SPJ2
Complete question is shown in figure.
Let' be a given function A graphical interpretation of the 2-point backward difference formula for approximating a) is the slope of the line joining the points of shissas - and X with > 0 True False
False. A graphical interpretation of the 2-point backward difference formula for approximating is not the slope of the line joining the points.
The 2-point backward difference formula is a method for approximating the derivative of a function at a specific point using two nearby points.
The backward difference formula is given by:
f'(x) ≈ (f(x) - f(x - h)) / h
Where f(x) is the given function, f(x - h) is the function evaluated at a point slightly to the left of x, and h is a small step size.
The formula calculates the approximate derivative by computing the difference between the function values at two points and dividing it by the step size. It does not involve the concept of connecting points with a line or calculating slopes.
Therefore, the statement is false. The graphical interpretation of the 2-point backward difference formula does not represent the slope of the line joining the points.
To know more about 2-point backward difference, refer here:
https://brainly.com/question/31501259
#SPJ4
Find the intersections of these pairs of linear equations. Al) 4x-3y=6 -2x+(3/2)y-3 A2) x-4y=-5 3x-2y.15 A3) 4x+y=9 2x-3y22 A4) -6x+9y = 9 2x-3y=6 Note on answers: If the answer is a point, write It as an ordered pair, (a,b). No spaces. Include the parentheses. If there is no solution, enter none, If they are the same line and there is an Infinite number of solutions, enter
A1) To find the intersection of the two equations, we can solve for one variable in terms of the other and substitute that equation into the other equation.
Starting with the first equation:
4x - 3y = 6
Solving for y:
-3y = -4x + 6
y = (4/3)x - 2
Now let's look at the second equation:
-2x + (3/2)y - 3 = 0
Solving for y:
(3/2)y = 2x + 3
y = (4/3)x + 2
Now we have two expressions for y:
y = (4/3)x - 2 and y = (4/3)x + 2
These lines have different y-intercepts and the same slope, so they are not parallel and must intersect at some point.
Setting the two expressions equal to each other:
(4/3)x - 2 = (4/3)x + 2
Subtracting (4/3)x from both sides:
-2 = 2
This is a contradiction, so there is no solution.
Answer: none
A2)
To find the intersection of the two equations, we can again solve for one variable in terms of the other and substitute that equation into the other equation.
Starting with the first equation:
x - 4y = -5
Solving for y:
-4y = -x - 5
y = (1/4)x + (5/4)
Now let's look at the second equation:
3x - 2y = 15
Solving for y:
-2y = -3x + 15
y = (3/2)x - 7.5
Now we have two expressions for y:
y = (1/4)x + (5/4) and y = (3/2)x - 7.5
Setting the two expressions equal to each other:
(1/4)x + (5/4) = (3/2)x - 7.5
Subtracting (1/4)x and adding 7.5 to both sides:
(11/4) = (5/2)x
Multiplying both sides by 2/5:
x = 22/20 = 11/10
Now we can substitute this value of x into either equation to find y:
y = (1/4)(11/10) + (5/4) = (11/40) + (50/40) = 61/40
Answer: (11/10, 61/40)
A3)
Starting with the first equation:
4x + y = 9
Solving for y:
y = -4x + 9
Now let's look at the second equation:
2x - 3y = 22
Solving for y:
-3y = -2x + 22
y = (2/3)x - (22/3)
Now we have two expressions for y:
y = -4x + 9 and y = (2/3)x - (22/3)
Setting the two expressions equal to each other:
-4x + 9 = (2/3)x - (22/3)
Adding 4x and (22/3) to both sides:
33/3 = (14/3)x
Multiplying both sides by 3/14:
x = 9/14
Now we can substitute this value of x into either equation to find y:
y = -4(9/14) + 9 = -18/7
Answer: (9/14, -18/7)
A4)
Starting with the first equation:
-6x + 9y = 9
Solving for y:
9y = 6x + 9
y = (2/3)x + 1
Now let's look at the second equation:
2x - 3y = 6
Solving for y:
-3y = -2x + 6
y = (2/3)x - 2
Now we have two expressions for y:
y = (2/3)x + 1 and y = (2/3)x - 2
Setting the two expressions equal to each other:
(2/3)x + 1 = (2/3)x - 2
Adding -2/3x and -1 to both sides:
0 = -3A1)
To find the intersection of the two equations, we can solve for one variable in terms of the other and substitute that equation into the other equation.
Starting with the first equation:
4x - 3y = 6
Solving for y:
-3y = -4x + 6
y = (4/3)x - 2
Now let's look at the second equation:
-2x + (3/2)y - 3 = 0
Solving for y:
(3/2)y = 2x + 3
y = (4/3)x + 2
Now we have two expressions for y:
y = (4/3)x - 2 and y = (4/3)x + 2
These lines have different y-intercepts and the same slope, so they are not parallel and must intersect at some point.
Setting the two expressions equal to each other:
(4/3)x - 2 = (4/3)x + 2
Subtracting (4/3)x from both sides:
-2 = 2
This is a contradiction, so there is no solution.
Answer: none
A2)
To find the intersection of the two equations, we can again solve for one variable in terms of the other and substitute that equation into the other equation.
Starting with the first equation:
x - 4y = -5
Solving for y:
-4y = -x - 5
y = (1/4)x + (5/4)
Now let's look at the second equation:
3x - 2y = 15
Solving for y:
-2y = -3x + 15
y = (3/2)x - 7.5
Now we have two expressions for y:
y = (1/4)x + (5/4) and y = (3/2)x - 7.5
Setting the two expressions equal to each other:
(1/4)x + (5/4) = (3/2)x - 7.5
Subtracting (1/4)x and adding 7.5 to both sides:
(11/4) = (5/2)x
Multiplying both sides by 2/5:
x = 22/20 = 11/10
Now we can substitute this value of x into either equation to find y:
y = (1/4)(11/10) + (5/4) = (11/40) + (50/40) = 61/40
Answer: (11/10, 61/40)
A3)
Starting with the first equation:
4x + y = 9
Solving for y:
y = -4x + 9
Now let's look at the second equation:
2x - 3y = 22
Solving for y:
-3y = -2x + 22
y = (2/3)x - (22/3)
Now we have two expressions for y:
y = -4x + 9 and y = (2/3)x - (22/3)
Setting the two expressions equal to each other:
-4x + 9 = (2/3)x - (22/3)
Adding 4x and (22/3) to both sides:
33/3 = (14/3)x
Multiplying both sides by 3/14:
x = 9/14
Now we can substitute this value of x into either equation to find y:
y = -4(9/14) + 9 = -18/7
Answer: (9/14, -18/7)
A4)
Starting with the first equation:
-6x + 9y = 9
Solving for y:
9y = 6x + 9
y = (2/3)x + 1
Now let's look at the second equation:
2x - 3y = 6
Solving for y:
-3y = -2x + 6
y = (2/3)x - 2
Now we have two expressions for y:
y = (2/3)x + 1 and y = (2/3)x - 2
Setting the two expressions equal to each other:
(2/3)x + 1 = (2/3)x - 2
Adding -2/3x and -1 to both sides: 0 = -3
Learn more about equation from
https://brainly.com/question/17145398
#SPJ11
Graph the line with slope 3 and intercept 1 X
Select all the representations that are appropriate for comparing bite strength to weight for different carnivores. 1. Scatter plot 2. Box plot 3. Histogram 4. Table 5. Dot plot
Scatter plot
Box plot
Dot plot
To compare bite strength to weight for different carnivores, scatter plot, box plot, and dot plot are appropriate representations.
Scatter plot: A scatter plot can show the relationship between bite strength and weight by plotting each carnivore as a data point. The x-axis can represent weight, the y-axis can represent bite strength, and each point on the plot represents a different carnivore. This allows for visualizing the overall trend or pattern between the two variables.
Box plot: A box plot can display the distribution of bite strength and weight for different carnivores. It provides information about the median, quartiles, and any outliers in the data. By comparing the box plots for different carnivores, we can assess the variations in bite strength relative to weight.
Histogram: A histogram is not appropriate in this case because it represents the distribution of a single variable, such as bite strength or weight, and does not directly compare the two variables.
Table: A table can present the bite strength and weight data for different carnivores, but it does not provide a visual comparison or representation of the relationship between the two variables.
Dot plot: A dot plot can show the individual data points of bite strength and weight for each carnivore. Each dot represents a carnivore, and by comparing the position and density of dots, we can observe the relationship between bite strength and weight.
To learn more about carnivores.
brainly.com/question/28038819
#SPJ11
Solve the following DE using Power series around x₁ = 0. Find the first eight nonzero terms of this DE. y" + xy' + 2y = 0.
To solve the differential equation y" + xy' + 2y = 0 using power series, we assume a power series representation for the solution and derive a recurrence relation for the coefficients. The first eight nonzero terms can be found by solving the recurrence relation.
To solve the differential equation y" + xy' + 2y = 0 using power series around x₁ = 0, we can assume a power series representation for the solution:
y(x) = ∑(n=0 to ∞) aₙxⁿ
Let's substitute this power series representation into the given differential equation and find the recurrence relation for the coefficients aₙ.
Differentiating y(x) with respect to x:
y'(x) = ∑(n=0 to ∞) aₙn xⁿ⁻¹
y''(x) = ∑(n=0 to ∞) aₙn(n-1) xⁿ⁻²
Substituting these expressions into the differential equation:
∑(n=0 to ∞) aₙn(n-1) xⁿ⁻² + x ∑(n=0 to ∞) aₙn xⁿ⁻¹ + 2∑(n=0 to ∞) aₙxⁿ = 0
Now, we can rearrange and collect like terms based on the powers of x:
∑(n=0 to ∞) [aₙn(n-1) xⁿ⁻² + aₙn xⁿ⁺¹ + 2aₙxⁿ] = 0
Since this equation must hold for all values of x, each coefficient of xⁿ must be zero. Therefore, we get the following recurrence relation for the coefficients:
aₙ(n-1)(n-2) + aₙ₋₁(n-1) + 2aₙ = 0
Simplifying the recurrence relation:
aₙ(n² - 3n + 2) + aₙ₋₁(n-1) = 0
Now, we can start finding the first few nonzero terms of the power series solution by using the recurrence relation.
First term (n=0):
a₀(0² - 3(0) + 2) + a₋₁(-1) = 0
a₀ + a₋₁ = 0
Second term (n=1):
a₁(1² - 3(1) + 2) + a₀(1-1) = 0
a₁ - a₀ = 0
From the first and second terms, we find a₀ = a₁ and a₋₁ = -a₀.
Third term (n=2):
a₂(2² - 3(2) + 2) + a₁(2-1) = 0
a₂ - 3a₁ = 0
a₂ - 3a₀ = 0
Fourth term (n=3):
a₃(3² - 3(3) + 2) + a₂(3-1) = 0
a₃ - 6a₂ = 0
a₃ - 6a₀ = 0
Continuing this process, we can find the values of a₄, a₅, a₆, and so on, using the recurrence relation.
By solving the recurrence relation for each term, we can determine the first eight nonzero terms of the power series solution to the differential equation y" + xy' + 2y = 0.
To learn more about differential equation visit : https://brainly.com/question/28099315
#SPJ11
Please help me with this questions please please ASAP ASAP please ASAP help please please ASAP please I'm begging you please please ASAP
Answer:
32
Step-by-step explanation:
The shapes are the same except for the direction so i think it would be 32
Answer:
32°
Step-by-step explanation:
quadrilateral ABCD is similar to quadrilateral WXYZ
Corresponding angles of similar polygons are congruent. We are told the two quadrilaterals are similar, so the pairs of corresponding angles are congruent.
You know angles are corresponding according to the statement of similarity is written.
quadrilateral ABCD is similar to quadrilateral WXYZ
The vertices are listed in the same order in both polygons showing which angles are corresponding.
<A corresponds to <W
m<W = m<A = 32°
Answer: 32°
Jason wants to create a box with the same volume as the one shown below. He wants the length to be 4
inches. What would be the measurements of the width and height?
Length: 4 inches
Width: inches
Height: inches
Explain how you determined the width and height.
- cubic inch
Given : jason wants to create a box with the same volume as the one shown
To find : measurements of width and height .
Solution :
Volume of given box
=> 6 * 2 * 3
=36
length to be 4 inches .
lwh = 36
=> 4 wh = 36
=> wh = 9
9 = 1 * 9
9 = 3 * 3
Width and Height can be 3 inches each or 1 and 9 inches